• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2018, Volume: 17, Issue: 4, Pages: 17-26

Original Article

Formulation and Evaluation of Solid Lipid Nanoparticles of Etravirine

Abstract

Objectives: Solid lipid nanoparticles (SLNs) are submicron colloidal carriers with an average diameter of nanometers. Owing to their inherent biodegradability and biocompatibility, lipids are now being extensively investigated as carriers for drugs and proteins. The aim of the present study was to formulate and evaluate SLNs containing etravirine, considering the assessment of its poor solubility and low bioavailability from the conventional dosage form. Methods: The formulations were prepared by high-pressure homogenization technique using different lipid-surfactant ratios, while keeping the quantities of the active ingredient constant. Nine different formulations were prepared. The nanoparticles obtained were characterized for particle size analysis, zeta potential analysis, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), drug content and in vitro drug release profile, stability, and comparative dissolution study of the pure drug and optimized formulation. Findings: Etravirine solid lipid nanoparticle formulations were characterized, and the particle size and surface charge were found to be 234.26 nm and -42.4 mV. The drug loading capacity of the particle was found to be 29.90%, and the in vitro release study of optimized formulations in phosphate buffer pH 6.8 with 1% sodium lauryl sulphate exerted a precise release of 96.48% over a period of 90 min. SEM analysis of the optimized formulation revealed that the particles were slightly spherical. Novelty: Formulation of solid lipid nanoparticles can be easily prepared with adequate physical properties and the required particle size and release characteristics which might be an advantage for oral administration.

Keywords: Etravirine, solid lipid nanoparticles, particle size, zeta potential, entrapment efficiency, drug release

References

  1. Suri SS, Fenniri H, Singh B. Nanotechnology-based Drug Delivery Systems. Current Research in Pharmaceutical Technology. 2011;2:1–8. Available from: https://occup-med.biomedcentral.com/articles/10.1186/1745-6673-2-16
  2. Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems – an overview. Acta Pharmaceutica Sinica B. 2013;3(6):361–372. Available from: https://dx.doi.org/10.1016/j.apsb.2013.10.001
  3. Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. European journal of pharmaceutics and biopharmaceutics. 2000;50(1):161–177. Available from: https://doi.org/10.1016/S0939-6411(00)00087-4
  4. Bhalekar MR, Pokharkar V, Madgulkar A, Patil N, Patil N. Preparation and Evaluation of Miconazole Nitrate-Loaded Solid Lipid Nanoparticles for Topical Delivery. AAPS PharmSciTech. 2009;10(1):289–296. Available from: https://dx.doi.org/10.1208/s12249-009-9199-0
  5. Kalam MA, Sultana Y, Ali A, Aqil M, Mishra AK, Chuttani K. Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. Journal of Drug Targeting. 2010;18(3):191–204. Available from: https://dx.doi.org/10.3109/10611860903338462
  6. Havens JP, Podany AT, Scarsi KK, Fletcher CV. Clinical Pharmacokinetics and Pharmacodynamics of Etravirine: An Updated Review. Clinical Pharmacokinetics. 2020;59(2):137–154. Available from: https://dx.doi.org/10.1007/s40262-019-00830-9
  7. Ojewole E, Mackraj I, Naidoo P, Govender T. Exploring the use of novel drug delivery systems for antiretroviral drugs. European Journal of Pharmaceutics and Biopharmaceutics. 2008;70(3):697–710. Available from: https://dx.doi.org/10.1016/j.ejpb.2008.06.020
  8. Dwivedi P, Khatik R, Khandelwal K, Shukla R, Paliwal SK, Dwivedi AK, et al. Preparation and Characterization of Solid Lipid Nanoparticles of Antimalarial Drug Arteether for Oral Administration. Journal of Biomaterials and Tissue Engineering. 2014;4(2):133–137. Available from: https://dx.doi.org/10.1166/jbt.2014.1148
  9. Senthilkumar P, Arivuchelvan A, Jagadeeswaran A, Subramanian N, Senthilkumar C, Mekala P. Formulation, optimization and evaluation of enrofloxacin solid lipid nanoparticles for sustained oral delivery. Asian Journal of Pharmaceutical and Clinical Research. 2015;p. 231–236. Available from: https://www.researchgate.net/publication/281738011_Formulation_optimization_and_evaluation_of_enrofloxacin_solid_lipid_nanoparticles_for_sustained_oral_delivery
  10. Reddiah CV, Devi PR, Mukkanti K, Katari S. Estimation of Etravirine by UV-Visible Spectrophotometric Method in Tablet Dosage Forms and Its in Vitro Dissolution Assessment. International Journal of Pharmaceutical Research and Development. 2012;3(3):287–295.
  11. Nimbalkar UA, Dhoka MV, Sonawane PA. Formulation and optimization of cefpodoxime proxetil loaded solid lipid nanoparticles by box-behnken design. Int J Res Ayur Pharm. 2011;2(6):1779–1785. Available from: https://ijrap.net/admin/php/uploads/714_pdf.pdf
  12. Dwivedi P, Khatik R, Khandelwal K, Shukla R, Paliwal SK, Dwivedi AK, et al. Preparation and Characterization of Solid Lipid Nanoparticles of Antimalarial Drug Arteether for Oral Administration. Journal of Biomaterials and Tissue Engineering. 2014;4(2):133–137. Available from: https://dx.doi.org/10.1166/jbt.2014.1148
  13. Liu W, Hu M, Liu W, Xue C, Xu H, Yang X. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. International Journal of Pharmaceutics. 2008;364(1):135–141. Available from: https://dx.doi.org/10.1016/j.ijpharm.2008.08.013
  14. Castelli F, Puglia C, Sarpietro MG, Rizza L, Bonina F. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry. International Journal of Pharmaceutics. 2005;304(1-2):231–238. Available from: https://dx.doi.org/10.1016/j.ijpharm.2005.08.011
  15. K.H R, S.A J, S.N D. Solid Lipid Nanoparticle: A Review. IOSR Journal of Pharmacy (IOSRPHR). 2012;2(6):34–44. Available from: https://dx.doi.org/10.9790/3013-26103444
  16. Pani NR, Nath LK, Acharya S, Bhuniya B. Application of DSC, IST, and FTIR study in the compatibility testing of nateglinide with different pharmaceutical excipients. Journal of Thermal Analysis and Calorimetry. 2012;108(1):219–226. Available from: https://dx.doi.org/10.1007/s10973-011-1299-x
  17. Pawar YB, Purohit H, Valicherla GR, Munjal B, Lale SV, Patel SB, et al. Novel lipid based oral formulation of curcumin: Development and optimization by design of experiments approach. International Journal of Pharmaceutics. 2012;436(1-2):617–623. Available from: https://dx.doi.org/10.1016/j.ijpharm.2012.07.031
  18. Blasi P, Giovagnoli S, Schoubben A, Puglia C, Bonina F, Rossi C, et al. Lipid nanoparticles for brain targeting I. Formulation optimization. International Journal of Pharmaceutics. 2011;419(1-2):287–295. Available from: https://dx.doi.org/10.1016/j.ijpharm.2011.07.035
  19. Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Advanced Drug Delivery Reviews. 2008;60(6):625–637. Available from: https://dx.doi.org/10.1016/j.addr.2007.10.010
  20. Kovacevic A, Savic S, Vuleta G, Müller RH, Keck CM. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): Effects on size, physical stability and particle matrix structure. International Journal of Pharmaceutics. 2011;406(1-2):163–172. Available from: https://dx.doi.org/10.1016/j.ijpharm.2010.12.036
  21. Carbone C, Tomasello B, Ruozi B, Renis M, Puglisi G. Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design. European Journal of Medicinal Chemistry. 2012;49:110–117. Available from: https://dx.doi.org/10.1016/j.ejmech.2012.01.001
  22. Pathak R, Dash RP, Misra M, Nivsarkar M. Role of mucoadhesive polymers in enhancing delivery of nimodipine microemulsion to brain via intranasal route. Acta Pharmaceutica Sinica B. 2014;4(2):151–160. Available from: https://dx.doi.org/10.1016/j.apsb.2014.02.002
  23. Chiappetta DA, Hocht C, Taira C, Sosnik A. Oral pharmacokinetics of the anti-HIV efavirenz encapsulated within polymeric micelles. Biomaterials. 2011;32(9):2379–2387. Available from: https://dx.doi.org/10.1016/j.biomaterials.2010.11.082

Copyright

© 2018 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.