• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2023, Volume: 22, Issue: 3, Pages: 103-112

Review Article

Revolutionizing Drug Design with Artificial Intelligence: A Comprehensive Review of Techniques, Applications, and Case Studies

Abstract

Introduction: Artificial intelligence (AI) has the potential to revolutionize drug design and discovery by significantly reducing the time and costs involved in developing new drugs. This literature review aims to explore the use of AI in drug design, focusing on virtual screening, de novo drug design, and prediction of ADME properties. Objective: The objective of this review is to provide an overview of the AI techniques used in drug design and their applications in virtual screening, de novo drug design, and prediction of ADME properties. The review also aims to summarize the advantages and limitations of these approaches and present case studies and examples showcasing their use in drug design. Methodology: A comprehensive search of academic databases was conducted, and 11 relevant articles were selected for inclusion in this review. The selected articles were analyzed to identify the AI techniques used in drug design, their applications, advantages, and limitations. Case studies and examples were also examined to demonstrate the efficacy of AI in drug design. Results: AI techniques such as machine learning, deep learning, and reinforcement learning have been successfully used in virtual screening, de novo drug design, and prediction of ADME properties. Virtual screening involves the use of AI algorithms to identify promising compounds for further testing, while de novo drug design involves the generation of novel compounds using AI techniques. Prediction of ADME properties involves the use of AI to predict the absorption, distribution, metabolism, and excretion of drug candidates. The case studies and examples presented in this review demonstrate the potential of AI to accelerate drug design and discovery. Conclusion: AI has the potential to revolutionize drug design and discovery by significantly reducing the time and costs involved in developing new drugs. Virtual screening, de novo drug design, and prediction of ADME properties are among the most promising applications of AI in drug design. However, further research is needed to fully explore the potential of AI in drug design and overcome some of the limitations of current approaches.

Keywords: Artificial Intelligence; Drug Design; Virtual Screening; De Novo Drug Design; ADME Prediction

References

  1. Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA, et al. Rethinking drug design in the artificial intelligence era. Nature Reviews Drug Discovery. 2020;19(5):353–364. Available from: https://doi.org/10.1038/s41573-019-0050-3
  2. Mouchlis VD, Afantitis A, Serra A, Fratello M, Papadiamantis AG, Aidinis V, et al. Advances in De Novo Drug Design: From Conventional to Machine Learning Methods. International Journal of Molecular Sciences. 2021;22(4):1676. Available from: https://doi.org/10.3390/ijms22041676
  3. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Molecular Diversity. 2021;25(3):1315–1360. Available from: https://doi.org/10.1007/s11030-021-10217-3
  4. Bai Q, Tan S, Xu T, Liu H, Huang J, Yao X. MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Briefings in Bioinformatics. 2021;22(3). Available from: https://doi.org/10.1093/bib/bbaa161
  5. Schneider G. Mind and machine in drug design. Nature Machine Intelligence. 2019;1(3):128–130. Available from: https://doi.org/10.1038/s42256-019-0030-7
  6. Blaschke T, Arús-Pous J, Chen H, Margreitter C, Tyrchan C, Engkvist O, et al. REINVENT 2.0 – an AI Tool for De Novo Drug Design. J Chem Inf Model. 2020;60(12):5918–5940. Available from: https://doi.org/10.1021/acs.jcim.0c00915
  7. Schneider G, Clark DE. Automated De Novo Drug Design: Are We Nearly There Yet? Angewandte Chemie. 2019;131(32):10906–10917. Available from: https://doi.org/10.1002/anie.201814681
  8. Batool M, Ahmad B, Choi S. A Structure-Based Drug Discovery Paradigm. International Journal of Molecular Sciences. 2019;20(11):2783. Available from: https://doi.org/10.3390/ijms20112783
  9. Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today. 2019;24(3):773–780. Available from: https://doi.org/10.1016/j.drudis.2018.11.014
  10. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discovery Today. 2021;26(1):80–93. Available from: https://doi.org/10.1016/j.drudis.2020.10.010
  11. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chemical Reviews. 2019;119(18):10520–10594. Available from: https://doi.org/10.1021/acs.chemrev.8b00728
  12. Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discovery Today. 2015;20(3):318–331. Available from: https://doi.org/10.1016/j.drudis.2014.10.012
  13. Shen C, Ding J, Wang Z, Cao D, Ding X, Hou T. From machine learning to deep learning: Advances in scoring functions for protein–ligand docking. WIREs Computational Molecular Science. 2020;10(1). Available from: https://doi.org/10.1002/wcms.1429
  14. Yang C, Chen EA, Zhang Y. Protein–Ligand Docking in the Machine-Learning Era. Molecules. 2022;27(14):4568. Available from: https://doi.org/10.3390/molecules27144568
  15. Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-novo design through deep reinforcement learning. Journal of Cheminformatics. 2017;9(1):48. Available from: https://doi.org/10.1186/s13321-017-0235-x
  16. Nag S, Baidya ATK, Mandal A, Mathew AT, Das B, Devi B, et al. Deep learning tools for advancing drug discovery and development. 3 Biotech. 2022;12(5). Available from: https://doi.org/10.1007/s13205-022-03165-8
  17. Luo JC, Zhao QY, Tu GW. Clinical prediction models in the precision medicine era: old and new algorithms. Ann Transl Med. 2020;8(6):7186705. Available from: https://doi.org/10.21037/atm.2020.02.63
  18. Lo YC, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discovery Today. 2018;23(8):1538–1546. Available from: https://doi.org/10.1016/j.drudis.2018.05.010
  19. Shen J, Nicolaou CA. Molecular property prediction: recent trends in the era of artificial intelligence. Drug Discovery Today: Technologies. 2019;32-33:29–36. Available from: https://doi.org/10.1016/j.ddtec.2020.05.001
  20. Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electronic Markets. 2021;31(3):685–695. Available from: https://doi.org/10.1007/s12525-021-00475-2
  21. Jiménez‐rosés M, Morgan BA, Sigstad MJ, Tran TDZ, Srivastava R, Bunsuz A, et al. Combined docking and machine learning identify key molecular determinants of ligand pharmacological activity on β2 adrenoceptor. Pharmacology Research & Perspectives. 2022;10(5):994. Available from: https://doi.org/10.1002/prp2.994
  22. Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladinskaya AV, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology. 2019;37(9):1038–1040. Available from: https://doi.org/10.1038/s41587-019-0224-x
  23. Xiong Y, Wang Y, Wang Y, Li C, Yusong P, Wu J, et al. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation. Journal of Computer-Aided Molecular Design. 2023;37(11):507–517. Available from: https://doi.org/10.1007/s10822-023-00523-3

Copyright

© 2023 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.