• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2025, Volume: 24, Issue: 1, Pages: 1-11

Systematic Review

A Comprehensive Systematic Review of Factors Modifying Drug Action: Exploring Pharmacogenomics, Epigenetics, Gut Microbiota, and the Role of Artificial Intelligence in Personalized Medicine

Abstract

The interplay of pharmacogenomics, epigenetics, gut microbiota research, and artificial intelligence (AI) has revolutionized personalized medicine, offering novel approaches to optimize drug action and improve clinical outcomes. However, a comprehensive evaluation of these factors is essential for their effective clinical translation. This systematic review and meta-analysis aim to evaluate the effectiveness of microbiota-targeted therapies and AI-driven diagnostic tools in advancing precision medicine. A systematic search across PubMed, Scopus, and Cochrane Library identified studies published between 2015 and 2024. Eligible studies were critically appraised, and data were synthesized using a random-effects meta-analysis model. Heterogeneity was evaluated using Cochran’s Q and I² statistics, while publication bias was assessed through Egger’s test and funnel plot analysis. From 40 studies included in the qualitative synthesis, 5 were eligible for quantitative meta-analysis. Microbiota-targeted therapies, such as probiotics and fecal microbiota transplants (FMT), significantly improved clinical outcomes in inflammatory bowel disease (pooled effect size = 0.77, 95% CI: 0.71–0.83). AI-based diagnostic tools, including Random Forest and QSAR models, exhibited superior diagnostic accuracy (pooled effect size = 0.87, 95% CI: 0.80–0.94). Subgroup analyses showed higher efficacy for microbiota-targeted therapies in disease-specific populations (pooled effect size = 0.79) compared to general populations (pooled effect size = 0.56). Heterogeneity was substantial (I² = 76.59%), while Egger’s test suggested slight publication bias (intercept = 2.00). Microbiota-targeted therapies and AI technologies hold significant promise for advancing personalized medicine, demonstrating improvements in clinical outcomes and diagnostic accuracy. While these findings highlight their transformative potential, future research must focus on addressing methodological heterogeneity and expanding high-quality primary studies to strengthen the evidence base.

Keywords: Pharmacogenomics, Epigenetics, Gut Microbiota, Artificial Intelligence, Personalized Medicine, Systematic Review, Meta-Analysis

References

  1. Kashyap PC, Chia N, Nelson H, Segal E, Elinav E. Microbiome at the frontier of personalized medicine. Mayo Clinic Proceedings. 2017;92(12):1855–1864. Available from: https://doi.org/10.1016/j.mayocp.2017.10.004
  2. Mousa WK, Ali AA. The Gut Microbiome Advances Precision Medicine and Diagnostics for Inflammatory Bowel Diseases. International Journal of Molecular Sciences. 2024;25(20):1–36. Available from: https://doi.org/10.3390/ijms252011259
  3. Iadanza E, Fabbri R, Bašić-ČiČak D, Amedei A, JHT. Gut microbiota and artificial intelligence approaches: A scoping review. Health Technology. 2020;10(2):1343–1358. Available from: https://doi.org/10.1007/s12553-020-00486-7
  4. Jiménez-Luna J, Grisoni F, Weskamp N, Schneider G. Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opinion on Drug Discovery. 2021;16(9):949–959. Available from: https://doi.org/10.1080/17460441.2021.1909567
  5. Collinson S, et al. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev. 2020;12(12). Available from: https://doi.org/10.1002/14651858.CD003048.pub4
  6. Suez J, Cohen Y, RVM, et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell. 2022;185(18):3307–3328.e19. Available from: https://doi.org/10.1016/j.cell.2022.07.016
  7. Zeevi D, Korem T, NZ, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079–1094. Available from: https://doi.org/10.1016/j.cell.2015.11.001
  8. Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470–480. Available from: https://doi.org/10.1016/j.cell.2012.07.008
  9. Thaiss CA, Itav S, Rothschild D, et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature. 2016;540(7634):544–551. Available from: https://doi.org/10.1038/nature20796
  10. Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host & Microbe. 2015;17(2):260–273. Available from: https://doi.org/10.1016/j.chom.2015.01.001
  11. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. Available from: https://doi.org/10.1038/nature11450
  12. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–1031. Available from: https://doi.org/10.1038/nature05414
  13. Ridaura VK, Faith JJ, Rey FE, Cheng J, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1–22. Available from: https://doi.org/10.1126/science.1241214
  14. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. Available from: https://doi.org/10.1038/nature09944
  15. Lozupone CA, Stombaugh JI, Gordon JI, JKJ, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–230. Available from: https://doi.org/10.1038/nature11550
  16. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–227. Available from: https://doi.org/10.1038/nature11053
  17. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. Available from: https://doi.org/10.1038/nature08821
  18. Oshrit S, Haim I, Sondra T, Omry K, Yoram L. Image and graph convolution networks improve microbiome-based machine learning accuracy. arxiv. 2022;p. 1–23. Available from: https://doi.org/10.48550/arXiv.2205.06525
  19. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nature Medicine. 2015;21(8):895–905. Available from: https://doi.org/10.1038/nm.3914
  20. He Y, Wu W, Zheng HM, Li P, Mcdonald D, Sheng HF, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nature Medicine. 2018;24(10):1532–1535. Available from: https://doi.org/10.1038/s41591-018-0164-x
  21. Vogtmann E, Hua X, Zeller G, Sunagawa S, Voigt AY, Hercog R, et al. Colorectal cancer and the human gut microbiome: Reproducibility with whole-genome shotgun sequencing. PLoS One. 2016;11(5):1–13. Available from: https://doi.org/10.1371/journal.pone.0155362
  22. Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Molecular Systems Biology. 2014;10(11):1–18. Available from: https://doi.org/10.15252/msb.20145645
  23. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513(7516):59–64. Available from: https://doi.org/10.1038/nature13568
  24. Wang J, Jia H. Metagenome-wide association studies: Fine-mining the microbiome. Nature Reviews Microbiology. 2016;14(8):508–522. Available from: https://doi.org/10.1038/nrmicro.2016.83
  25. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Medicine. 2016;8(1):1–11. Available from: https://doi.org/10.1186/s13073-016-0307-y
  26. Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167(4):1125–1136. Available from: https://doi.org/10.1016/j.cell.2016.10.020

Copyright

© 2024 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.