• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research


Journal of Pharmaceutical Research

Year: 2021, Volume: 20, Issue: 4, Pages: 80-87

Original Article

Antidiabetic and Antihyperlipidemic Effects of Calamus rotang L leaves (Arecaceae) in Streptozotocin-Nicotinamide Induced Diabetic Model


Background: Calamus rotang L (Asteraceae), also known as Pirampu in India, has long been employed in Ayurvedic medicinal formulations. It has been used to cure diabetes in folklore medicine for centuries. Aim: This Study evaluated the antidiabetic and antihyperlipidemic effects of Calamus rotang L leaves in streptozotocin-nicotinamide (STZ-NC) induced diabetic model. Methods: Estimation of fasting blood glucose, glycosylated haemoglobin, total haemoglobin, lipid profiles, lipoproteins, hepatic marker enzyme activity, and pancreas histopathology was performed in STZ-NC induced diabetic rats after receiving ethanol extract of C. rotang L leaves (100 & 200 mg/kg) for 28 days orally. The data were statistically analysed using one-way analysis (ANOVA) and post hoc multiple comparison tests. Results: The ethanol extract of C. rotang L leaves was given at doses of 100 and 200 mg/kg showed a substantial drop in fasting blood glucose levels and an increase in body weight. HbA1C, TC, TG, LDL, VLDL, AST, ALT, and ALP levels were dramatically lowered by the ethanol extract of the leaves of C. rotang L, whereas Hb, HDL cholesterol levels were significantly increased. Furthermore, in STZ-NC induced diabetes, the C. rotang L leaves ethanol extract has a positive impact on pancreas histological alterations. Conclusions: For the first time, these findings show that the C. rotang L leaves ethanol extract has significant antidiabetic and antihyperlipidemic potential, bolstering the plant's claimed application in the treatment of diabetes and its complications.


Calamus rotang L leaves, Antidiabetic, Antihyperlipidemic, Glibenclamide


  1. Muzumdar KP. Pharmaceutical Science in Homoeopathy and Pharmacodynamics (1). New Delhi. BJAIN Publishers Pvt. Ltd. 1974.
  2. Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS. Systematic Review of Herbs and Dietary Supplements for Glycemic Control in Diabetes. Diabetes Care. 2003;26(4):1277–1294. doi: 10.2337/diacare.26.4.1277
  3. Ravi K, Rajasekaran S, Subramanian S. Antihyperlipidemic effect of Eugenia jambolana seed kernel on streptozotocin-induced diabetes in rats. Food and Chemical Toxicology. 2005;43(9):1433–1439. doi: 10.1016/j.fct.2005.04.004
  4. Alarcon-Aguilar FJ, Roman-Ramos R, Flores-Saenz JL, Aguirre-Garcia F. Investigation on the hypoglycaemic effects of extracts of four Mexican medicinal plants in normal and Alloxan-diabetic mice. Phytotherapy Research. 2002;16(4):383–386. doi: 10.1002/ptr.914
  5. Kar A, Choudhary BK, Bandyopadhyay NG. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. Journal of Ethnopharmacology. 2003;84(1):105–108. doi: 10.1016/s0378-8741(02)00144-7
  6. Basumatary SK, Ahmed M, Deka SP. Some medicinal plant leaves used by Boro (tribal) people of Goalpara district. Assam. Natural Products Research. 2004;3(2):88–90.
  7. Kagyung R, Gajurel PR, Pethy P, Singh B. Ethnobotanical studies of Dehang-Debang. Biosphere Reserve of Arunachal Pradesh with special reference to Memba tribe. Indian Journal of Traditional Knowledge. 2010;9(3):496–501.
  8. Khare CP. Indian Medicinal Plants: An Illustrated Dictionary. (p. 110-111) New Delhi. Springer-Verlag Heidelberg Publication. 2004: 110-111.
  9. Chhetri DR, Parajuli P, Subba GC. Antidiabetic plants used by Sikkim and Darjeeling Himalayan tribes, India. Journal of Ethnopharmacology. 2005;99(2):199–202. doi: 10.1016/j.jep.2005.01.058
  10. Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. Journal of Ethnopharmacology. 2002;81(1):81–100. doi: 10.1016/s0378-8741(02)00059-4
  11. Jarald E, Joshi SB, Jain DC. Diabetes and Herbal Medicines. Iranian Journal of Pharmacology & Therapeutics. 2008;7(1):97–106.
  12. Narayan DS, Patra VJ, Dinda SC. Diabetes and Indian traditional medicines an overview. International Journal of Pharmacy and Pharmaceutical Sciences. 2012;4(3):45–53.
  13. Ripa PFA, Dash MOR, Faruk. CNS depressant, analgesic and anti-inflammatory activities of methanolic seed extract of Calamus rotang Linn fruits in rat. Journal of Pharmacognosy and Phytochemistry. 2015;3(5):121–125.
  14. Senthilvel G, Anoop A, Jegadeesan M, Thirugnanasambantham P, M. Antiinflammatory activities of Calamus rotang Mill. Indian Journal of Pharmaceutical Science. 2005;67(4):499–500.
  15. Shil A, Himel MK, Khair A, Alam MN, Uddin AFMJ. In vitro antioxidant activity of the methanolic extracts of leaf and fruit of calamus rotang linn. Journal of Experimental Biosciences. 2012;3(2):33–36.
  16. Roy S, Kumari D, Chakraborty M, Haldar PK. Anti Proliferative activity of Calamus rotang as a spotlight on ehrlich’s ascites carcinoma treated peritoneal as well as solid tumor model. International Journal of Pharmacy and Pharmaceutical Sciences. 2018;10(1):85–90. doi: 10.22159/ijpps.2018v10i1.21449
  17. Gupta A, Chaphalkar SR. Assessment of immunomodulatory activity of aqueous extract of Calamus rotang. Avicenna Journal of Phytomedicine. 2017;7(3):199–205.
  18. Gupta Sushama R Chaphalkar A. Immunosuppressive activity of crude saponins from the leaves of Calotropis gigantea, Calamus roteng and Artocarpus Integrifolia. International Journal of Pharma Sciences and Research. 2015;6(3):526–531.
  19. Gupta A, Shaikh CA, Chaphalkar RS. Aqueous extract of Calamus rotang as a novel immunoadjuvant enhances both humoral and cell mediated immune response. Journal of Herbmed Pharmacology. 2017;6(1):43–48.
  20. Ripa FA, Dash PR, Podder AK. Anti-diarrheal and hypoglycemic activities of methanol extract of Calamus rotang L. seed in rat. Research Journal of Pharmacognosy. 2016;3(2):33–40.
  21. Saraswathy A, Vidhya B. (+)-afzelechin from the rhizome of Calamus rotang linn. Indian Drugs. 2012;49(12):49–50.
  22. Pallavi Y, Hemalatha KPJ. GC- MS analysis of phytocomponents in leaves of Calamus Rotang. International Journal of pharma and Bio Sciences. 2018;9(2):38–52. Available from: https://doi.org/10.22376/ijpbs.2018.9.2.b38-52
  23. Khandelwal KR. Practical Pharmacognosy (17th ). (pp. 149-156) Pune: Nirali Prakashan. 2007: 149-156.
  24. Selvamani P, Latha S, Elayaraja K, Babu P, Gupta J, Pal T, et al. Antidiabetic activity of the ethanol extract of <i> Capparis sepiaria</i> L leaves. Indian Journal of Pharmaceutical Sciences. 2008;70(3):378–380. Available from: https://doi.org/10.4103/0250-474x.43008
  25. Jaiswal D, Rai PK, Kumar A, Mehta S, Watal G. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. Journal of Ethnopharmacology. 2009;123(3):392–396. doi: 10.1016/j.jep.2009.03.036
  26. Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, et al. Experimental NIDDM: Development of a New Model in Adult Rats Administered Streptozotocin and Nicotinamide. Diabetes. 1998;47(2):224–229.
  27. Punitha I, Shirwaikar A, Shirwaikar A. Antidiabetic activity of benzyl tetra isoquinoline alkaloid berberine in streptozotocin-nicotinamide induced type 2 diabetic rats. Diabetologia Croatica. 2005;34(4):117–128.
  28. Shirwaikar A, Rajendran K, Punitha ISR. Antidiabetic activity of alcoholic stem extract of Coscinium fenestratum in streptozotocin-nicotinamide induced type 2 diabetic rats. Journal of Ethnopharmacology. 2005;97(2):369–374. doi: 10.1016/j.jep.2004.11.034
  29. Kumar P, Semalty A, Mir SR, Ali M, Amin S. Hypoglycemic and Hypolipidemic Activity of Pongamia pinnata (Linn.) Pierre in Streptozotocin-induced Diabetic Rats. International Journal of Pharmacology. 2010;6(5):738–743. doi: 10.3923/ijp.2010.738.743
  30. Reitman S, Frankel S. A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. American Journal of Clinical Pathology. 1957;28(1):56–63. doi: 10.1093/ajcp/28.1.56
  31. Selvan VT, Manikandan L, Kumar S, Suresh GP, Kakoti R, Gomathi BB, et al. Antidiabetic and Antioxidant Effect of Methanol Extract of Artanema sesamoides in Streptatozocin-Induced Diabetic Rats. International Journal of Applied Research in Natural Products. 2008;1(1):25–33.
  32. Adisa RA, Choudhary MI, Olorunsogo OO. Hypoglycemic activity of Buchholzia coriacea (Capparaceae) seeds in streptozotocin-induced diabetic rats and mice. Experimental and Toxicologic Pathology. 2011;63(7-8):619–625. doi: 10.1016/j.etp.2010.05.002
  33. Kumar S, Kumar V, Prakash O. Antidiabetic and anti-lipemic effects of Cassia siamea leaves extract in streptozotocin induced diabetic rats. Asian Pacific Journal of Tropical Medicine. 2010;3(11):871–873. doi: 10.1016/s1995-7645(10)60209-x
  34. Ramkumar KM, Vanitha P, Uma C, Suganya N, Bhakkiyalakshmi E, Sujatha J. Antidiabetic activity of alcoholic stem extract of Gymnema montanum in streptozotocin-induced diabetic rats. Food and Chemical Toxicology. 2011;49(12):3390–3394. doi: 10.1016/j.fct.2011.09.027
  35. Hammeso WW, Emiru YK, Getahun KA, Kahaliw W. Antidiabetic and Antihyperlipidemic Activities of the Leaf Latex Extract of Aloe megalacantha Baker (Aloaceae) in Streptozotocin-Induced Diabetic Model. Evidence-Based Complementary and Alternative Medicine. 2019;2019:1–9. doi: 10.1155/2019/8263786
  36. Dimo T, Ngueguim FT, Kamtchouing P, Dongo E, Tan PV. Glucose lowering efficacy of aqueous stem bark extract of Trema orientalis (Linn) Blume in normal and streptozotocin diabetic rats. Pharmazie. 2006;61:233–236.
  37. Ahmed Z, Chishti MZ, Johri RK, Bhagat A, Gupta KK, Ram G. Antihyperglycemic and antidyslipidemic activity of aqueous extract of Dioscorea bulbiferan tubers. Diabetologia Croatica. 2009;38:63–72.
  38. Ripa FA, Dash PR, Podder AK. Anti-diarrheal and hypoglycaemic activity of methanol extract of Calamus rotang L seed in rat. Research Journal of Pharmacognosy. 2016;3(2):33–40.
  39. Jacobson TA, Miller M, Schaefer EJ. Hypertriglyceridemia and cardiovascular risk reduction. Clinical Therapeutics. 2007;29(5):763–777. doi: 10.1016/j.clinthera.2007.05.002
  40. Eleazu CO, Iroaganachi M, Okafor PN, Ijeh II, Eleazu KC. Ameliorative potentials of ginger (Z. officinale Roscoe) on relative organ weights in streptozotocin induced diabetic rats. International Journal of Biomedical Science. 2013;9(2):82–90.
  41. Marks JB, Raskin P. Cardiovascular risk in diabetes. Journal of Diabetes and its Complications. 2000;14(2):108–115. doi: 10.1016/s1056-8727(00)00065-9
  42. Wu KK, Huan Y. Diabetic atherosclerosis mouse models. Atherosclerosis. 2007;191(2):241–249. doi: 10.1016/j.atherosclerosis.2006.08.030
  43. Nagmoti DM, Kothavade PS, Bulani VD, Gawali NB, Juvekar AR. Antidiabetic and antihyperlipidemic activity of Pithecellobium dulce (Roxb.) Benth seeds extract in streptozotocin-induced diabetic rats. European Journal of Integrative Medicine. 2015;7(3):263–273. doi: 10.1016/j.eujim.2015.01.001
  44. Liu Y, Sun J, Rao S, Su Y, Li J, Li C, et al. Antidiabetic activity of mycelia selenium-polysaccharide from Catathelasma ventricosum in STZ-induced diabetic mice. Food and Chemical Toxicology. 2013;62:285–291. doi: 10.1016/j.fct.2013.08.082
  45. Kasetti RB, Rajasekhar MD, Kondeti VK, Fatima SS, Kumar EGT, Swapna S, et al. Antihyperglycemic and antihyperlipidemic activities of methanol:water (4:1) fraction isolated from aqueous extract of Syzygium alternifolium seeds in streptozotocin induced diabetic rats. Food and Chemical Toxicology. 2010;48(4):1078–1084. doi: 10.1016/j.fct.2010.01.029
  46. Zhang J, Chen L, Zheng J, Zeng T, Li H, Xiao H, et al. The protective effect of resveratrol on islet insulin secretion and morphology in mice on a high-fat diet. Diabetes Research and Clinical Practice. 2012;97(3):474–482. doi: 10.1016/j.diabres.2012.02.029


© 2021 Published by Krupanidhi Educational Trust. This is an open-access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/)


Subscribe now for latest articles and news.