Notice: Undefined offset: 1 in /var/www/jopcr.com/article-detail-page.php on line 103
CTAB and 4-Nitroaniline Modified Montmorillonite: A Platform for Nanomolar Detection of Dopamine, Uric Acid and Ascorbic Acid
 
  • P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2025, Volume: 24, Issue: 2, Pages: 104–109

Original Article

CTAB and 4-Nitroaniline Modified Montmorillonite: A Platform for Nanomolar Detection of Dopamine, Uric Acid and Ascorbic Acid

Abstract

In this work sodium montmorillonite clay (NaMMT) was organomodified with cationic surfactant molecule Cetyltrimethyl Ammonium Bromide (CTAB) and 4-Nitroaniline (4NA). Glassy carbon electrode (GCE) surface was now modified with that organomodified clay. The new electrode can now be designated as 4NACME. We demonstrated determination of Dopamine (DA) and Uric Acid (UA) in presence of high concentration of Ascorbic Acid (AA) in PBS of pH 7.4 using 4NACME. Modification of GCE offers substantial improvements in voltammetric sensitivity and selectivity towards the determination of DA and UA. It can inhibit the voltammetric response of AA while the redox reaction of DA is promoted. When a square wave voltammetric (SWV) technique was used, the peak separation between DAs and AAs was found to be 979 mV and between UAs and AAs was found to be 435mV. These results were again confirmed by cyclic voltammetric (CV) technique to establish the electrochemical reversibility of DA, UA and AA at 4NACME. From linear calibration plots the slopes (µA/nM) and correlation coefficients are found to be 0.0043, 0.0041, 0.0009 and 0.9786, 0.9765, 0.9909 for DA, UA and AA respectively. The detection limits (3σ) are 8nM, 14nM and 18nM for DA, UA and AA respectively. The modified electrode showed very good reproducibility with relative standard deviation < 3%.

Keywords: Montmorillonite, Electrochemistry, Sensing, Dopamine, Uric acid, Ascorbic acid

References

  1. Mahesh KRV, Murthy HNN, Kumaraswamy BE, Raghavendra N, Sridhar R, Krishna M, et al. Synthesis and characterization of organomodified Na-MMT using cation and anion surfactants. Frontiers of Chemistry in China. 2011;6(2):153–158. Available from: https://dx.doi.org/10.1007/s11458-011-0239-4
  2. Bossi A, Piletsky SA, Piletsky EV, Righetti PG, Turner AP. Surface-grafted molecularly imprinted polymers for protein recognition. Anallytical Chemistry. 2001;73(21):5281–5286. Available from: https://doi.org/10.1021/ac0006526
  3. Yürdü C, Işçi S, Ünlü C, Atici O, Ece ÖI, Güngör N. Synthesis and characterization of HDA/NaMMT organoclay. Bulletin of Materials Science. 2005;28(6):623–628. Available from: https://dx.doi.org/10.1007/bf02706353
  4. Wightman RM, May LJ, Michael AC. Detection of dopamine dynamics in the brain. Analytical Chemistry. 1988;60(13):769A–779A. Available from: https://doi.org/10.1021/ac00164a001
  5. Guilbault GG. Analytical Uses of Immobilized Enzymes. New York. Marcel Dekker. 1984.
  6. Venton BJ, Wightman RM. Psychoanalytical Electrochemistry: Dopamine and Behavior. Analytical Chemistry. 2003;75(19):414 A–421 A. Available from: https://dx.doi.org/10.1021/ac031421c
  7. Justice JB. Quantitative microdialysis of neurotransmitters. Journal of Neuroscience Methods. 1993;48(3):263–276. Available from: https://dx.doi.org/10.1016/0165-0270(93)90097-b
  8. Ohnuki Y, Matsuda H, Ohsaka T, Oyama N. Permselectivity of films prepared by electrochemical oxidation of phenol and amino-aromatic compounds. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1983;158(1):55–67. Available from: https://dx.doi.org/10.1016/s0022-0728(83)80338-6
  9. Guadalupe AR, Abruna HD. Electroanalysis with chemically modified electrodes. Analytical Chemistry. 1985;57(1):142–149. Available from: https://dx.doi.org/10.1021/ac00279a036
  10. Shibata T, Sakai N, Fukuda K, Ebina Y, Sasaki T. Photocatalytic properties of titania nanostructured films fabricated from titania nanosheets. Physical Chemistry Chemical Physics. 2007;9(19):2413–2420. Available from: https://doi.org/10.1039/B618448K
  11. Yeh WL, Kuo YR, Cheng SH. Voltammetry and flow-injection amperometry for indirect determination of dopamine. Electrochemistry Communications. 2008;10(1):66–70. Available from: https://dx.doi.org/10.1016/j.elecom.2007.10.020
  12. Ensafi AA, Taei M, Khayamian T. Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid by Differential Pulse Voltammetry using Tiron Modified Glassy Carbon Electrode. International Journal of Electrochemical Science. 2010;5(1):116–130. Available from: https://dx.doi.org/10.1016/s1452-3981(23)15271-0
  13. Zhuang Z, Li J, Xu R, Xiao D. Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using Overoxidized Polypyrrole/Graphene Modified Electrodes. International Journal of Electrochemical Science. 2011;6(6):2149–2161. Available from: https://dx.doi.org/10.1016/s1452-3981(23)18173-9
  14. Pandurangachar M, Swamy BEK, Chandrashekar BN, Gilbert O, Reddy S, Sherigara BS. Electrochemical Investigations of Potassium Ferricyanide and Dopamine by 1-butyl-4-methylpyridinium tetrafluoro borate Modified Carbon Paste Electrode: A Cyclic Voltammetric Study. International Journal of Electrochemical Science. 2010;5(8):1187–1202. Available from: https://dx.doi.org/10.1016/s1452-3981(23)15354-5
  15. R, Swamy BEK, Deepa R, Krishna V, Gilbert O, Chandra U, et al. Electrochemical investigations of dopamine at chemically modified alcian blue carbon paste electrode: a cyclic voltammetric study. International Journal of Electrochemical Science. 2009;4(6):832–845. Available from: https://doi.org/10.1016/S1452-3981(23)15187-X
  16. March J. Advanced Organic Chemistry. (pp. 261-263) New York. John Wiley & Sons. 1992.

Copyright

© 2025 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.