• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2023, Volume: 22, Issue: 3, Pages: 158-164

Original Article

Antimicrobial Efficacy of Methanolic fraction of Shea nut on selected Skin Pathogens and Characterization of the Bioactive Compounds

Abstract

This study aimed to investigate the antimicrobial activities of methanolic extracts of Vitellaria paradoxa nut against dermatophytes and characterize its bioactive compounds. Isolates used in this study were Candida albican ATCC14503, Trichophyton rubrum ATCC28188, Trichophyton mentagrophytes ATCC9533 and Staphylococcus aureus ATCC25925. Antimicrobial assay and minimum inhibitory concentration (MIC) were carried out using agar plug, agar well diffusion and broth dilution techniques. Bioactive compounds were characterized using Gas Chromatography-Mass Spectrometry (GC-MS). Phytochemical screening revealed alkaloids, tanins and saponins as active phytoconstituents of V. paradoxa's antimicrobial activity. Methanolic extract at 200 mg/ml showed mean clear zone of 25.0 mm and 29.0 mm against S. aureus and C. albican respectively. For T. rubrum, no growth observed after 14 days while T. mentagrophyte showed radial growth at day 12 of incubation. Highest activity of standard antibiotics against S. aureus was obtained with Meropenem (25.0 mm). Griseofulvin, itraconazole and fluconazole at 150, 25 and 100 mg/ml respectively inhibited T. rubrum while for T. mentagrophyte, at 350, 25 and 200 mg/ml respectively after 14 days incubation. MIC for S. aureus and C. albican were observed at 150 mg/ml and 100 mg/ml respectively. T. rubrum and T. mentagrophyte in comparison to conventional antifungals revealed Itraconazole among other antifungals exhibited lowest MIC value (25 mg/ml) against both fungi. However, MIC for extract was recorded at 150 mg/ml against T. rubrum while T. mentagrophyte did not indicate any MIC effect. Some bioactive compounds present in extract includes, E- 15 Heptadecenal, possess antifungal activity, Methyl palmitate possess anti-inflammatory, Palmitic acid possesses antifungal activities. The species of dermatophytes used in this present study has never been reported.

Keywords: Antimicrobial, Dermatophytes, Bioactive, Antibiotics, Antifungal

References

  1. Badulla WFS, Alshakka M, Ibrahim MIM. Antimicrobial Resistance Profiles for Different Isolates in Aden, Yemen: A Cross-Sectional Study in a Resource-Poor Setting. BioMed Research International. 2020;2020:1–8. Available from: https://doi.org/10.1155/2020/1810290
  2. Lu J, Sheldenkar A, Lwin MO. A decade of antimicrobial resistance research in social science fields: a scientometric review. Antimicrobial Resistance & Infection Control. 2020;9(1):1–3. Available from: https://doi.org/10.1186/s13756-020-00834-2
  3. Khameneh B, Iranshahy M, Soheili V, Bazzaz BSF. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control. 2019;8(1):1–28. Available from: https://doi.org/10.1186/s13756-019-0559-6
  4. Ceruso M, Clement JA, Todd MJ, Zhang F, Huang Z, Anastasio A, et al. The Inhibitory Effect of Plant Extracts on Growth of the Foodborne Pathogen, Listeria monocytogenes. Antibiotics. 2020;9(6):319. Available from: https://doi.org/10.3390/antibiotics9060319
  5. Nigussie D, Davey G, Legesse BA, Fekadu A, Makonnen E. Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complementary Medicine and Therapies. 2021;21(1):1–10. Available from: https://doi.org/10.1186/s12906-020-03183-0
  6. LVA, Ansel JHC. Ansel’s pharmaceutical dosage forms and drug delivery systems. (Vol. 720) Baltimore: Lippincoil Williams and Wilkins. 2010.
  7. Hong TD, Linington S, Ellis RH. Handbook for Genebanks: No. 4 International Plant Genetic Resources Institute. Rome, Italy. 1996.
  8. Adeleye OA, Babalola CO, Femi-Oyewo MN, Balogun GY. Antimicrobial activity and stability of Andrographis paniculata cream containing shea butter. Nigerian Journal of Pharmaceutical Research. 2019;15(1):9–18. Available from: https://www.ajol.info/index.php/njpr/article/view/188236
  9. Burstein VL, Beccacece I, Guasconi L, Mena CJ, Cervi L, Chiapello LS. Skin Immunity to Dermatophytes: From Experimental Infection Models to Human Disease. Frontiers in Immunology. 2020;11:1–16. Available from: https://doi.org/10.3389/fimmu.2020.605644
  10. Dhanjal DS, Mehra P, Bhardwaj S, Singh R, Sharma P, Nepovimova E, et al. Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology. International Journal of Nanomedicine. 2022;17:2505–2533. Available from: https://doi.org/10.2147/IJN.S363282
  11. Ukpanukpong RU, Warra AA, Chibuzor E. Proximate composition of various Shea Nut Kernels. Journal of Advances in Biological and Basic Research. 2016;2:21–23. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3201123
  12. Abdul-Mumeen I, Zakpaa HD, Mills-Robertson FC. Biochemical and microbiological analysis of shea nut cake: A waste product from shea butter processing. Journal of Agricultural Biotechnology and Sustainable Development. 2013;5(4):61–68. Available from: https://ir.knust.edu.gh/handle/123456789/5351
  13. Maanikuu P, Peker K. Medicinal and nutritional benefits from the Shea tree (Vitellaria paradoxa) Journal of Biology Agriculture and Healthcare. 2017;7(22):51–57. Available from: https://core.ac.uk/download/pdf/234662463.pdf
  14. Cushnie TPT, Cushnie B, Lamb AJ. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. International Journal of Antimicrobial Agents. 2014;44(5):377–386. Available from: https://doi.org/10.1016/j.ijantimicag.2014.06.001
  15. Taghipour S, Shamsizadeh F, Pchelin IM, Rezaei-Matehhkolaei A, Mahmoudabadi AZ, Valadan R, et al. Emergence of terbinafine resistant Trichophyton mentagrophytes in Iran, harboring mutations in the squalene epoxidase (SQLE) gene. 2020. Available from: https://doi.org/10.2147/IDR.S246025
  16. Alqani V, Meizel MM, Alfuadi A. Problem of antibiotic resistance in urinary tract infection in ALdiwaniyah city, Iraq. Rawal Medical Journal. 2023;48(1):1. Available from: https://www.rmj.org.pk/?mno=132595
  17. Wibowo RH, Darwis W, Yudha S, Purnaningsih I, Siboro R. Potential Antimicrobe Producer of Endophytic Bacteria from Yellow Root Plant (Arcangelisia flava (L.)) Originated from Enggano Island. International Journal of Microbiology. 2022;p. 1–11. Available from: https://doi.org/10.1155/2022/6435202
  18. Hamed A, Mantawy E, El-Bakly W, Abdel-Mottaleb Y, Azab S. Methyl Palmitate: the Naturally Occurring Cardioprotective Agent. Archives of Pharmaceutical Sciences Ain Shams University. 2020;0(0):47–62. Available from: https://doi.org/10.1016/j.ejphar.2021.174183
  19. Prasath KG, Alexpandi R, Parasuraman R, Pavithra M, Ravi AV, Pandian SK. Anti-inflammatory potential of myristic acid and palmitic acid synergism against systemic candidiasis in Danio rerio (Zebrafish) Biomedicine & Pharmacotherapy. 2021;133:111043. Available from: https://doi.org/10.1016/j.biopha.2020.111043
  20. Kadhim J, Mohammed M, Jihadi G, Imad HH. In Vitro Antibacterial, Antifungal and Phytochemical Analysis of Methanolic Extract of Fruit Cassia fistula. Oriental Journal of Chemistry. 2016;32(3):1329–1346. Available from: http://dx.doi.org/10.13005/ojc/320307
  21. Jumina J, Lavendi W, Singgih T, Triono S, Kurniawan YS, Koketsu M. Preparation of Monoacylglycerol Derivatives from Indonesian Edible Oil and Their Antimicrobial Assay against Staphylococcus aureus and Escherichia coli. Scientific Reports. 2019;9(1):10941. Available from: https://doi.org/10.1038/s41598-019-47373-4

Copyright

© 2023 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.