• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2024, Volume: 23, Issue: 1, Pages: 7-15

Review Article

COVID19 – An Approach Towards Using Traditional Medicine

Abstract

Viral infections in recent times creates life threatening conditions in patients. Recent covid infection is the major proof for this action in human immune system. As it has the capability to mutate in various different structures so, no counter mechanism is there to protect against the severe form. We have found many cases in Africa and other continents where mass destruction of human life occurs due to different viral infections. Many countries have their traditional practices to counteract the disease. From ancient times it has been found that traditional medicines plays a very important role in diagnosis of these infections. We have discussed various ethnopharmocologically important plant and their compounds which takes part in active role in anti inflammatory and antiviral effect on human populations. Different compounds isolated from different plant either it is root, stem or leaf can be very potential for diagnosing the diseases. It can also effect multiple organ system and try to cope up with various infections. The signal trunsduction pathway plays a very crucial role in activating different cell types and act according to their target cell. In recent times we develop various synthetic drugs to compensate the natural molecules but it has serious side effects in human and different viral strains areco adapted to those synthetic molecules in a very quick manner. So we have to go for the natural and try to use it in our daily life which slowly reduce the burden of the viral infection in our body.

Keywords

Covid, Synthetic Drugs, Ethnopharmacology, Anti Inflammatory

References

  1. Burrell CJ, Howard CR, FAM. Coronaviruses. 2017. Available from: https://doi.org/10.1016/B978-0-12-375156-0.00031-X
  2. Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesisJournal of Microbiology, Immunology and Infection2021;54(2):159163. Available from: https://dx.doi.org/10.1016/j.jmii.2020.03.022
  3. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronavirusesNature Reviews Microbiology2019;17(3):181192. Available from: https://dx.doi.org/10.1038/s41579-018-0118-9
  4. Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domainsNature Communications2017;8(1):15092. Available from: https://dx.doi.org/10.1038/ncomms15092
  5. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2The EMBO Journal2005;24(8):16341643. Available from: https://dx.doi.org/10.1038/sj.emboj.7600640
  6. Ruwali P, Rai N, Kumar N, Gautam P. Antiviral potential of medicinal plants: An overviewINTERNATIONAL RESEARCH JOURNAL OF PHARMACY2013;4(6):816. Available from: https://dx.doi.org/10.7897/2230-8407.04603
  7. Charan J, Bhardwaj P, Dutta S, Kaur R, Bist SK, Detha MD, et al. Use of Complementary and Alternative Medicine (CAM) and Home Remedies by COVID-19 Patients: A Telephonic SurveyIndian Journal of Clinical Biochemistry2021;36(1):108111. Available from: https://dx.doi.org/10.1007/s12291-020-00931-4
  8. Sun Z, Yu C, Wang W, Yu G, Zhang T, Zhang L, et al. Aloe Polysaccharides Inhibit Influenza A Virus Infection—A Promising Natural Anti-flu DrugFrontiers in Microbiology2018;9(9):2338. Available from: https://dx.doi.org/10.3389/fmicb.2018.02338
  9. Yates KM, Rosenberg LJ, Harris CK, Bronstad DC, King GK, Biehle GA, et al. Pilot study of the effect of acemannan in cats infected with feline immunodeficiency virusVeterinary Immunology and Immunopathology1992;35(1-2):177189. Available from: https://dx.doi.org/10.1016/0165-2427(92)90130-i
  10. Karaca K, Sharma JM, Nordgren R. Nitric oxide production by chicken macrophages activated by acemannan, a complex carbohydrate extracted from Aloe VeraInternational Journal of Immunopharmacology1995;17(3):183188. Available from: https://dx.doi.org/10.1016/0192-0561(94)00102-t
  11. Singh R, Chahal KK, Singla N. Chemical composition and pharmacological activities of Saussurea lappa: A reviewJournal of Pharmacognosy and Phytochemistry2017;6(4):12981306. Available from: https://www.phytojournal.com/archives/2017/vol6issue4/PartS/6-3-32-604.pdf
  12. Zahara K, Tabassum S, Sabir S, Arshad M, Qureshi R, Amjad MS, et al. A review of therapeutic potential of Saussurea lappa-An endangered plant from HimalayaAsian Pacific Journal of Tropical Medicine2014;7(1):S60S69. Available from: https://dx.doi.org/10.1016/s1995-7645(14)60204-2
  13. Kim DY, Choi BY. Costunolide—A Bioactive Sesquiterpene Lactone with Diverse Therapeutic PotentialInternational Journal of Molecular Sciences2019;20(12):2926. Available from: https://dx.doi.org/10.3390/ijms20122926
  14. Scarponi C, Butturini E, Sestito R, Madonna S, Cavani A, Mariotto S, et al. Inhibition of Inflammatory and Proliferative Responses of Human Keratinocytes Exposed to the Sesquiterpene Lactones Dehydrocostuslactone and CostunolidePLoS ONE2014;9(9):e107904. Available from: https://dx.doi.org/10.1371/journal.pone.0107904
  15. Zheng H, Chen Y, Zhang J, Wang L, Jin Z, Huang H, et al. Evaluation of protective effects of costunolide and dehydrocostuslactone on ethanol-induced gastric ulcer in mice based on multi-pathway regulationChemico-Biological Interactions2016;250:6877. Available from: https://dx.doi.org/10.1016/j.cbi.2016.03.003
  16. Uttekar MM, Das T, Pawar RS, Bhandari B, Menon V, Nutanet al. Anti-HIV activity of semisynthetic derivatives of andrographolide and computational study of HIV-1 gp120 protein bindingEuropean Journal of Medicinal Chemistry2012;56:368374. Available from: https://dx.doi.org/10.1016/j.ejmech.2012.07.030
  17. Gupta S, Mishra KP, Ganju L. Broad-spectrum antiviral properties of andrographolideArchives of Virology2017;162(3):611623. Available from: https://dx.doi.org/10.1007/s00705-016-3166-3
  18. Zhou J, Hu SE, Tan SH, Cao R, Chen Y, Xia D, et al. Andrographolide sensitizes cisplatin-induced apoptosis via suppression of autophagosome-lysosome fusion in human cancer cellsAutophagy2012;8(3):338349. Available from: https://dx.doi.org/10.4161/auto.18721
  19. Judith D, Mostowy S, Bourai M, Gangneux N, Lelek M, Lucas‐Hourani M, et al. Species‐specific impact of the autophagy machinery on Chikungunya virus infectionEMBO reports2013;14(6):534544. Available from: https://dx.doi.org/10.1038/embor.2013.51
  20. Krejbich-Trotot P, Gay B, Li-Pat-Yuen G, Hoarau JJ, Jaffar-Bandjee MC, Briant L, et al. Chikungunya triggers an autophagic process which promotes viral replicationVirology Journal2011;8(1):432. Available from: https://dx.doi.org/10.1186/1743-422x-8-432
  21. Chiou W, Chen C, Lin J. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolideBritish Journal of Pharmacology2000;129(8):15531560. Available from: https://dx.doi.org/10.1038/sj.bjp.0703191
  22. Iruretagoyena MI, Tobar JA, González PA, Sepúlveda SE, Figueroa CA, Burgos RA, et al. Andrographolide Interferes with T Cell Activation and Reduces Experimental Autoimmune Encephalomyelitis in the MouseJournal of Pharmacology and Experimental Therapeutics2005;312(1):366372. doi: 10.1124/jpet.104.072512
  23. Rehman S, Ashfaq UA, Riaz S, Javed T, Riazuddin S. Antiviral activity of Acacia nilotica against Hepatitis C Virus in liver infected cellsVirology Journal2011;8(1):220. Available from: https://dx.doi.org/10.1186/1743-422x-8-220
  24. Loizou S, Lekakis I, Chrousos GP, Moutsatsou P. β‐Sitosterol exhibits anti‐inflammatory activity in human aortic endothelial cellsMolecular Nutrition & Food Research2010;54(4):551558. Available from: https://dx.doi.org/10.1002/mnfr.200900012
  25. Benencia F, Courrèges MC. Antiviral activity of sandalwood oil against Herpes simplex viruses-1 and -2Phytomedicine1999;6(2):119123. Available from: https://dx.doi.org/10.1016/s0944-7113(99)80046-4
  26. Kamal R, Yadav S, Mathur M, Katariya P. Antiradical efficiency of 20 selected medicinal plantsNatural Product Research2012;26(11):10541062. Available from: https://dx.doi.org/10.1080/14786419.2011.553720
  27. Sharma M, Levenson C, Bell R , Anderson S , Hudson J , Collins C , et al. Suppression of Lipopolysaccharide‐stimulated Cytokine/Chemokine Production in Skin Cells by Sandalwood Oils and Purified α‐santalol and β‐santalolPhytotherapy Research2014;28(6):925932. Available from: https://dx.doi.org/10.1002/ptr.5080
  28. Arthanari SK, Vanitha J, Ganesh M, Venkateshwaran K, Clercq D. Evaluation of antiviral and cytotoxic activities of methanolic extract of S. grandiflora (Fabaceae) flowersAsian Pacific Journal of Tropical Biomedicine2012;2(2):S855S858. Available from: https://dx.doi.org/10.1016/s2221-1691(12)60323-2
  29. Anantaworasakul P, Klayraung S, Okonogi S. Antibacterial activities of Sesbania grandiflora extractsDrug Discoveries & Therapeutics2011;5(1):1217. Available from: https://doi.org/10.5582/ddt.v5.1.12
  30. Verma H, Patil PR, Kolhapure RM, Gopalkrishna V. Antiviral activity of the Indian medicinal plant extract Swertia chirata against herpes simplex viruses: a study by in-vitro and molecular approachIndian Journal of Medical Microbiology2008;26(4):322326. Available from: https://pubmed.ncbi.nlm.nih.gov/18974483/
  31. Phoboo S, Pinto MDS, Barbosa ACL, Sarkar D, Bhowmik PC, Jha PK, et al. Phenolic‐Linked Biochemical Rationale for the Anti‐Diabetic Properties of Swertia chirayita (Roxb. ex Flem.) Phytotherapy Research2013;27(2):227235. Available from: https://dx.doi.org/10.1002/ptr.4714
  32. Alzohairy MA. Therapeutics Role of Azadirachta indica (Neem) and Their Active Constituents in Diseases Prevention and TreatmentEvidence-Based Complementary and Alternative Medicine2016;2016:111. Available from: https://dx.doi.org/10.1155/2016/7382506
  33. Tiwari V, Darmani NA, Yue BYJT, Shukla D. In vitroantiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type‐1 infectionPhytotherapy Research2010;24(8):11321140. Available from: https://dx.doi.org/10.1002/ptr.3085
  34. Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A Review on Antibacterial, Antiviral, and Antifungal Activity of CurcuminBioMed Research International2014;2014:112. Available from: https://dx.doi.org/10.1155/2014/186864
  35. Ichsyani M, Ridhanya A, Risanti M, Desti H, Ceria R, Putri DH, et al. Antiviral effects of <i>Curcuma longa</i> L. against dengue virus in vitro and in vivoIOP Conference Series: Earth and Environmental Science2017;101:012005. Available from: https://dx.doi.org/10.1088/1755-1315/101/1/012005
  36. Cullen BR, Greene WC. Regulatory pathways governing HIV-1 replicationCell1989;58(3):423426. Available from: https://dx.doi.org/10.1016/0092-8674(89)90420-0
  37. Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, et al. Curcumin, a Novel p300/CREB-binding Protein-specific Inhibitor of Acetyltransferase, Represses the Acetylation of Histone/Nonhistone Proteins and Histone Acetyltransferase-dependent Chromatin TranscriptionJournal of Biological Chemistry2004;279(49):5116351171. Available from: https://dx.doi.org/10.1074/jbc.m409024200
  38. Chainani-Wu N. Safety and Anti-Inflammatory Activity of Curcumin: A Component of Tumeric (<i>Curcuma longa</i>) The Journal of Alternative and Complementary Medicine2003;9(1):161168. Available from: https://dx.doi.org/10.1089/107555303321223035
  39. Schaffer M, Schaffer PM, Zidan J, Sela GB. Curcuma as a functional food in the control of cancer and inflammationCurrent Opinion in Clinical Nutrition and Metabolic Care2011;14(6):588597. Available from: https://dx.doi.org/10.1097/mco.0b013e32834bfe94
  40. Pushpangadan. Handbook of herbs and spices. 2012.
  41. Chiang L, Ng L, Cheng P, Chiang W, Lin C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicumClinical and Experimental Pharmacology and Physiology2005;32(10):811816. Available from: https://dx.doi.org/10.1111/j.1440-1681.2005.04270.x
  42. Benencia F, Courrges MC. In vitro andin vivo activity of eugenol on human herpesvirusPhytotherapy Research2000;14(7):495500. Available from: https://dx.doi.org/10.1002/1099-1573(200011)14:7<495::aid-ptr650>3.0.co;2-8
  43. Bloemen K, Verstraelen S, Heuvel RVD, Witters H, Nelissen I, Schoeters G. The allergic cascade: Review of the most important molecules in the asthmatic lungImmunology Letters2007;113(1):618. Available from: https://dx.doi.org/10.1016/j.imlet.2007.07.010
  44. Balkrishna A, Pokhrel S, Singh H, Joshi M, Mulay VP, Haldar S, et al. Withanone from Withania somnifera Attenuates SARS-CoV-2 RBD and Host ACE2 Interactions to Rescue Spike Protein Induced Pathologies in Humanized Zebrafish ModelDrug Design, Development and Therapy2021;Volume 15(15):11111133. Available from: https://dx.doi.org/10.2147/dddt.s292805
  45. Maitra R, Porter MA, Huang S, Gilmour BP. Inhibition of NFκB by the natural product Withaferin A in cellular models of Cystic Fibrosis inflammationJournal of Inflammation2009;6(1):15. Available from: https://dx.doi.org/10.1186/1476-9255-6-15
  46. Yamamura Y, Kawakami J, Santa T, Kotaki H, Uchino K, Sawada Y, et al. Pharmacokinetic profile of glycyrrhizin in healthy volunteers by a new high‐performance liquid chromatographic methodJournal of Pharmaceutical Sciences1992;81(10):10421046. Available from: https://dx.doi.org/10.1002/jps.2600811018
  47. Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D, et al. Antiviral effects of Glycyrrhiza speciesPhytotherapy Research2008;22(2):141148. Available from: https://dx.doi.org/10.1002/ptr.2295
  48. Mori K, Sakai H, Suzuki S, Sugai K, Akutsu Y, Ishikawa M, et al. Effects of glycyrrhizin (SNMC: Stronger Neo-Minophagen C) in hemophilia patients with HIV infection. The Tohoku Journal of Experimental Medicine1989;158(1):2535. Available from: https://dx.doi.org/10.1620/tjem.158.25
  49. Pompei R, Pani A, Flore O, Marcialis MA, Loddo B. Antiviral activity of glycyrrhizic acidExperientia1980;36(3):304. Available from: https://dx.doi.org/10.1007/bf01952290
  50. Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herbActa Pharmaceutica Sinica B2015;5(4):310315. Available from: https://dx.doi.org/10.1016/j.apsb.2015.05.005
  51. Patel S. Evaluation of anti- asthmatic activity of Glycyrrhiza glabraBiosci.Biotechnol Res Asia2009;6(2):76166.
  52. Shin YW, Bae EA, Lee B, Lee S, Kim J, Kim YS, et al. In Vitro and In Vivo Antiallergic Effects of Glycyrrhiza glabra and Its ComponentsPlanta Medica2007;73(3):257261. Available from: https://dx.doi.org/10.1055/s-2007-967126
  53. Sharifi-Rad M, Varoni E, Salehi B, Sharifi-Rad J, Matthews K, Ayatollahi S, et al. Plants of the Genus Zingiber as a Source of Bioactive Phytochemicals: From Tradition to PharmacyMolecules2017;22(12):2145. Available from: https://dx.doi.org/10.3390/molecules22122145
  54. Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell linesJournal of Ethnopharmacology2013;145(1):146151. Available from: https://dx.doi.org/10.1016/j.jep.2012.10.043
  55. Wahab A. In vitro study of the antiviral activity of Zingiber officinalePlanta Medica2009;75(9):7.
  56. Jeena K, Liju VB, Kuttan R. Antioxidant, anti-inflammatory and antinociceptive activities of essential oil from gingerIndian J Physiol Pharmacol2013;57(1):5162.
  57. Luettig J, Rosenthal R, Lee IFM, Krug SM, Schulzke JD. The ginger component 6-shogaol prevents TNF-α-induced barrier loss via inhibition of PI3K/Akt and NF-κB signalingMolecular Nutrition & Food Research2016;60(12):25762586. Available from: https://dx.doi.org/10.1002/mnfr.201600274
  58. Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, et al. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe) Foods2019;8(6):185. Available from: https://dx.doi.org/10.3390/foods8060185
  59. Khan AM, Shahzad M, Asim MBR, Imran M, Shabbir A. Zingiber officinale ameliorates allergic asthma via suppression of Th2-mediated immune responsePharmaceutical Biology2015;53(3):359367. Available from: https://dx.doi.org/10.3109/13880209.2014.920396

Copyright

© 2024 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.