• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2018, Volume: 17, Issue: 4, Pages: 27-33

Original Article

Design and Evaluation of Transdermal Patches of Nicorandil

Abstract

Objectives: The purpose of this study was to develop a transdermal patch containing the drug nicorandil with different ratios of Eudragit RL 100 polymeric by solvent casting method. Methods: The prepared patches were evaluated for physicochemical characterization, thickness uniformity, mass uniformity, drug content uniformity, folding endurance, moisture loss, FTIR, SEM, in vitro release, ex vivo permeation, and stability studies. Findings: The results of the studies suggest that formulated transdermal patches with good physical properties and drug content were obtained by the solvent casting method. Surface morphological studies indicated uniform distribution of drugs in the polymeric patch formulation. The in vitro diffusion study suggested that drug release was controlled by all six formulations in comparison with the pure drug. The cumulative release of the drug in phosphate buffer pH 6.8 from formulations (F1-F6) ranged between 89.55±0.62- 78.52±0.63% in a 12-hour study. Ex vivo results showed a good correlation with the in vitro study results. About 89.55±0.62% of the drug from (F4=drug: polymer 1:4) permeated through the rat abdominal skin sample over a period of 12 h. Novelty: Transdermal patches could be a good alternative for controlled drug therapy with nicorandil.

Keywords: Nicorandil, Eudragit, Transdermal patches, Controlled release, In vitro release

References

  1. Bhowmik AK, Cabral P. Cyclone Sidr Impacts on the Sundarbans Floristic Diversity. Earth Science Research. 2013;2:62–79. Available from: https://dx.doi.org/10.5539/esr.v2n2p62
  2. JN. JN., ed. Advances in controlled and novel drug delivery. (pp. 1-470) CBS publishers & distributors. 2008.
  3. Allen VL, NG, Popovich NG, Ansel HC. Pharmaceutical dosage forms and drug delivery systems. (8). (pp. 298-299) 2005.
  4. Hiremath JG, Valluru R, Jaiprakash N, Katta SA, Matad PP. Pharmaceutical aspects of nicorandil. International Journal of Pharmacy and Pharmaceutical Science. 2010;2(4):24–33. Available from: https://www.innovareacademics.in/journal/ijpps/Vol2Issue4/785.pdf
  5. Frydman AM, Chapelle P, Diekmann H, Bruno R, Thebault JJ, Bouthier J, et al. Pharmacokinetics of nicorandil. The American Journal of Cardiology. 1989;63(21):J25–J33. Available from: https://dx.doi.org/10.1016/0002-9149(89)90201-4
  6. Jani RK, Patel JK. A review on delivery of antihypertensive drugs through trans-dermal systems. International Journal of Pharmacology and Clinical Sciences. 2012;1:1461–74. Available from: https://ijpcsonline.com/files/files/37-288.pdf
  7. Rastogi V, Pragya PU. A brief view on antihypertensive drugs delivery through transdermal patches. International Journal of Pharmaceutical Sciences and Research. 2012;3(7):1955. Available from: https://ijpsr.com/bft-article/a-brief-view-on-antihypertensive-drugs-delivery-through-transdermal-patches/
  8. Selvam RP, Singh AK, Sivakumar T. Transdermal drug delivery systems for antihypertensive drugs-A review. International Journal of Pharmaceutical and Biomedical Research. 2010;1(1):1–8.
  9. Verma PRP, Iyer SS. Controlled Transdermal Delivery of Propranolol Using HPMC Matrices: Design and In-vitro and In-vivo Evaluation. Journal of Pharmacy and Pharmacology. 2010;52(2):151–156. Available from: https://doi.org/10.1211/0022357001773797
  10. Aqil M, Sultana Y, Ali A, Dubey K, Najmi AK, Pillai KK. Transdermal Drug Delivery Systems of a Beta Blocker: Design, In Vitro, and In Vivo Characterization. Drug Delivery. 2004;11(1):27–31. Available from: https://dx.doi.org/10.1080/10717540490265225
  11. Shin SC, Shin EY, Cho CW. Enhancing Effects of Fatty Acids on Piroxicam Permeation Through Rat Skins. Drug Development and Industrial Pharmacy. 2000;26:563–566. Available from: https://dx.doi.org/10.1081/ddc-100101269
  12. Pongjanyakul T, Prakongpan S, Priprem A. Acrylic Matrix Type Nicotine Transdermal Patches: In Vitro Evaluations and Batch-to-Batch Uniformity. Drug Development and Industrial Pharmacy. 2003;29(8):843–853. Available from: https://dx.doi.org/10.1081/ddc-120024180
  13. Nalluri BN, Milligan C, Chen J, Crooks PA, Stinchcomb AL. In Vitro Release Studies on Matrix Type Transdermal Drug Delivery Systems of Naltrexone and Its Acetyl Prodrug. Drug Development and Industrial Pharmacy. 2005;31(9):871–877. Available from: https://dx.doi.org/10.1080/03639040500271944
  14. Tipre DN, Vavia PR. Formulation Optimization and Stability Study of Transdermal Therapeutic System of Nicorandil. Pharmaceutical Development and Technology. 2002;7(3):325–332. Available from: https://dx.doi.org/10.1081/pdt-120005729
  15. Mishra AN, Jain NK. Transdermal Drug Delivery. In: Controlled and Novel Drug Delivery. (pp. 101-118) 2004.
  16. Bergh BAIvd, Bouwstra JA, Junginger HE, Wertz PW. Elasticity of vesicles affects hairless mouse skin structure and permeability. Journal of Controlled Release. 1999;62(3):367–379. Available from: https://dx.doi.org/10.1016/s0168-3659(99)00168-6
  17. Ghosh TK, Adir J, Xiang S, Onyilofur S. Transdermal Delivery of Metoprolol II: In-Vitro Skin Permeation and Bioavailability in Hairless Rats. Journal of Pharmaceutical Sciences. 1995;84(2):158–160. Available from: https://dx.doi.org/10.1002/jps.2600840207

Copyright

© 2018 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.