• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2024, Volume: 23, Issue: 2, Pages: 68-70

Original Article

Molecular Docking-Based Screening of Five Heterocyclic Quinone Compounds for Antifungal Activity on Yeast Sec14p and Validation by Redocking

Abstract

Discover new antifungal drugs by evaluating the efficacy of heterocyclic compounds. Investigate the potential of yeast Sec14p protein as a target for antifungal drugs. Compare the effectiveness of Auto Dock and PyRX software for docking simulations of heterocyclic compounds against Sec14p. Docking simulations were performed using Auto Dock and PyRX software to assess the binding affinity of five specific heterocyclic compounds to the yeast Sec14p protein. The reference compound for comparison was a known antifungal agent with a Picolamide scaffold (PDB ID: 6FOE). Atovaquone exhibited the strongest binding affinity (-9.4 kcal/mol) using PyRX. A known antifungal agent showed a significant discrepancy in binding energy between Auto Dock (-6.2 kcal/mol) and PyRX (-3.64 kcal/mol). This study explores a novel class of compounds (Quinones) for antifungal drug discovery. It highlights the potential of yeast Sec14p protein as a target for antifungal drugs. The findings suggest that PyRX might be more suitable for docking simulations of certain compound classes than Auto Dock. This emphasizes the importance of software selection based on the specific molecules under investigation.

Keywords: Molecular docking, Quinones, Antifungal, PyRX, Auto dock

References

  1. Nucci M, Marr KA. Emerging fungal diseases. Clinical Infectious Diseases. 2005;41(4):521–526. Available from: https://doi.org/10.1086/432060
  2. Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases-estimate precision. Journal of Fungi. 2017;3(4):1–29. Available from: https://doi.org/10.3390/jof3040057
  3. Houšť J, Spížek J, Havlíček V. Antifungal Drugs. Metabolites. 2020;10(3):1–16. Available from: https://doi.org/10.3390/metabo10030106
  4. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harbor Perspectives in Medicine. 2015;5(7):1–22. Available from: https://doi.org/10.1101%2Fcshperspect.a019752
  5. Futuro DO, Ferreira PG, Nicoletti CD, Borba-Santos LP, Silva FCD, Rozental S, et al. The Antifungal Activity of Naphthoquinones: An Integrative Review. Anais da Academia Brasileira de Ciências . 2018;90(1 suppl 2):1187–1214. Available from: http://dx.doi.org/10.1590/0001-3765201820170815
  6. Kazeminejad Z, Marzi M, Shiroudi A, Kouhpayeh SA, Farjam M, Zarenezhad E. Novel 1, 2, 4-Triazoles as Antifungal Agents. BioMed Research International. 2022;2022:1–39. Available from: https://doi.org/10.1155%2F2022%2F4584846
  7. Rahmoun NM, Boucherit-Otmani Z, Boucherit K, Benabdallah M, Villemin D, Choukchou-Braham N. Antibacterial and antifungal activity of lawsone and novel naphthoquinone derivatives. Medicine et Maladies Infectiousness. 2012;42(6):270–275. Available from: https://doi.org/10.1016/j.medmal.2012.05.002
  8. Gubbins PO. Triazole antifungal agents’ drug-drug interactions involving hepatic cytochrome P450. Expert Opinion on Drug Metabolism & Toxicology. 2011;7(11):1411–1429. Available from: https://doi.org/10.1517/17425255.2011.627854

Copyright

© 2024 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.