• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2024, Volume: 23, Issue: 1, Pages: 23-33

Systematic Review

Advanced Applications of Artificial Intelligence in Pharmacovigilance: Current Trends and Future Perspectives

Abstract

The primary goal of pharmacovigilance, the cornerstone of public health, is to track and evaluate adverse drug reactions in order to guarantee patient safety. Conventional approaches suffer from biases in human error, inefficiency, and scalability problems. A new era in pharmacovigilance is being ushered in by the introduction of artificial intelligence (AI), which holds the promise of vast data analysis, automated procedures, and enhanced safety signal detection. Artificial intelligence technologies improve adverse event detection and signal identification by providing unparalleled speed, accuracy, and scalability. They are adept at applying sophisticated algorithms, machine learning models, and natural language processing to glean insights from unstructured data sources like clinical notes, patient narratives, and regulatory reports. This capacity makes it possible to implement risk management plans that are more thorough and proactive. However, using artificial intelligence in pharmacovigilance necessitates large expenditures for processing power, infrastructure, and regulatory compliance. For artificial intelligence-driven systems to be accurate, dependable, and applicable, ongoing validation, monitoring, and improvement efforts are essential. The ethical and legal implications of patient privacy, data security, and regulatory compliance underscore the necessity of cautious artificial intelligence deployment in order to maintain public trust and protect patient rights. Regulatory agencies, healthcare professionals, and artificial intelligence developers must work together efficiently to implement explainable artificial intelligence frameworks, adaptive surveillance techniques, and improved signal validation processes in order to fully realize the potential of artificial intelligence in pharmacovigilance. This will usher in a new era of proactive risk assessment and improved public health outcomes.

Keywords

Pharmacovigilance, Artificial Intelligence, Signal Detection, Regulatory Affairs, Patient Safety, Public Health

References

  1. Rohilla A, Singh N, Kumar V, Sharma MK, Dahiya A, Kushnoor A. Pharmacovigilance: needs and objectivesJournal of Advanced Pharmacy Education and Research2012;2:201206.
  2. Alhat BR. Pharmacovigilance: an overviewInt J Res Pharm Chem2011;1(4):2231781. Available from: https://www.ijrpc.com/files/000027.pdf
  3. Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applicationsAcademic Press. 2020.
  4. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and futureStroke and Vascular Neurology2017;2(4):230243. Available from: https://dx.doi.org/10.1136/svn-2017-000101
  5. Bhattamisra SK, Banerjee P, Gupta P, Mayuren J, Patra S, Candasamy M. Artificial Intelligence in Pharmaceutical and Healthcare ResearchMDPI AG. 2023. Available from: https://dx.doi.org/10.3390/bdcc7010010
  6. Kompa B, Hakim JB, Palepu A, Kompa KG, Smith M, Bain PA, et al. Artificial Intelligence Based on Machine Learning in Pharmacovigilance: A Scoping ReviewDrug Safety2022;45(5):477491. Available from: https://dx.doi.org/10.1007/s40264-022-01176-1
  7. Medhi B, Murali K, Kaur S, Prakash A. Artificial intelligence in pharmacovigilance: Practical utilityIndian Journal of Pharmacology2019;51(6):373. Available from: https://dx.doi.org/10.4103/ijp.ijp_814_19
  8. Edrees H, Song W, Syrowatka A, Simona A, Amato MG, Bates DW. Intelligent Telehealth in Pharmacovigilance: A Future PerspectiveDrug Safety2022;45(5):449458. Available from: https://dx.doi.org/10.1007/s40264-022-01172-5
  9. Luo Y, Thompson WK, Herr TM, Zeng Z, Berendsen MA, Jonnalagadda SR, et al. Natural Language Processing for EHR-Based Pharmacovigilance: A Structured ReviewDrug Safety2017;40(11):10751089. Available from: https://dx.doi.org/10.1007/s40264-017-0558-6
  10. Salas M, Petracek J, Yalamanchili P, Aimer O, Kasthuril D, Dhingra S, et al. The Use of Artificial Intelligence in Pharmacovigilance: A Systematic Review of the LiteraturePharmaceutical Medicine2022;36(5):295306. Available from: https://dx.doi.org/10.1007/s40290-022-00441-z
  11. Kassekert R, Grabowski N, Lorenz D, Schaffer C, Kempf D, Roy P, et al. Industry Perspective on Artificial Intelligence/Machine Learning in PharmacovigilanceDrug Safety2022;45(5):439448. Available from: https://dx.doi.org/10.1007/s40264-022-01164-5
  12. Lewis DJ, McCallum JF. Utilizing Advanced Technologies to Augment Pharmacovigilance Systems: Challenges and OpportunitiesTherapeutic Innovation & Regulatory Science2020;54(4):888899. Available from: https://dx.doi.org/10.1007/s43441-019-00023-3
  13. Babu A, Sabu S, Dharan S. Artificial Intelligence: An Innovative Approach in PharmacovigilanceWorld Journal of Pharmaceutical Research. 20209(13):569579. Available from: https://wjpr.s3.ap-south-1.amazonaws.com/article_issue/1602935098.pdf
  14. Salvo F, Micallef J, Lahouegue A, Chouchana L, Létinier L, Faillie JL, et al. Will the future of pharmacovigilance be more automated? Expert Opinion on Drug Safety2023;22(7):541548. Available from: https://dx.doi.org/10.1080/14740338.2023.2227091

Copyright

© 2024 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.