• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2024, Volume: 23, Issue: 3, Pages: 174-177

Original Article

Molecular Docking Study of Heterocyclic Compounds for Antifungal Activity Against Granulomatous Amoebic Encephalitis

Abstract

Our study identified seven unique heterocyclic compounds: 2-(m Tolylthio) Chalcone, chitosan oligosaccharide, and 2-hydroxy chalcone. Six-chloropyridine, 4-naphthoquinone, Thiobenzimidazole, 2-thiobenzoxazole, 6-carboxylic acid ethyl ester, and Anthrimide are probable choices that may be found in a chemical database. Posaconazole and Isuvuconazole are reference compounds found in a literature study. The isuvuconazole-bound complex of Acanthamoeba castellanii CYP51 of PDBID 6UX0 is the focus of our investigation. Docking simulations were carried out to evaluate these drugs' binding affinity to the Acanthamoeba castellanii CYP51 complex, using Isuvuconazole as the reference compound. Vina Wizard and PyRX software were used to carry out the docking simulations. Anthrimide, the ligand, demonstrated a binding energy of -10.3 kcal/mol in our data, indicating great promise for treating antifungal diseases in the future. Auto dock further validated this value to be -10.2. Further in vivo testing will confirm the findings of this study.

Keywords: Docking, Amoebic, Encephalitis, Heterocyclic, Antifungal, PyRX

References

  1. Dowell JD, Mukherjee S, Raghavan P, Rehm PK. AIDS presenting as Granulomatous Amebic Encephalitis: PET and MR imaging correlation. Journal of Neuroimaging. 2015;25(6):1047–1049. Available from: https://doi.org/10.1111/jon.12212
  2. Hossain CM, Ryan LK, Gera M, Choudhuri S, Lyle N, Ali KA, et al. Antifungals and Drug Resistance. Encyclopedia. 2022;2(4):1722–1737. Available from: https://doi.org/10.3390/encyclopedia2040118
  3. Verlee A, Mincke S, Stevens CV. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate polymers. 2017;164:268–283. Available from: https://doi.org/10.1016/j.carbpol.2017.02.001
  4. Gupta D, Jain DK. Chalcone derivatives as potential antifungal agents: synthesis and antifungal activity. Journal of advanced pharmaceutical technology & research. 2015;6(3):114–117. Available from: https://doi.org/10.4103/2231-4040.161507
  5. Teixeira MM, Carvalho DT, Sousa E, Pinto E. New antifungal agents with azole moieties. Pharmaceuticals. 2022;15(11):1–43. Available from: https://doi.org/10.3390/ph15111427
  6. Sharma V, Shing B, Hernandez-Alvarez L, Debnath A, Podust LM. Domain-swap dimerization of Acanthamoeba castellanii CYP51 and a unique inactivation mechanism by isavuconazole. Molecular Pharmacology. 2020;98(6):770–780. Available from: https://doi.org/10.1124/molpharm.120.000092
  7. Ivanov M, Ćirić A, Stojković D. Emerging antifungal targets and strategies. International Journal of Molecular Sciences. 2022;23(5):1–26. Available from: https://doi.org/10.3390/ijms23052756
  8. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods in Molecular Biology. 2015;1263:243–250. Available from: https://doi.org/10.1007/978-1-4939-2269-7_19
  9. Sharma V, Shing B, Hernandez-Alvarez L, Debnath A, Podust LM. Domain-swap dimerization of Acanthamoeba castellanii CYP51 and a unique mechanism of inactivation by Isuvuconazole. Molecular Pharmacology. 2020;98(6):770–780. Available from: https://doi.org/10.1124/molpharm.120.000092

Copyright

© 2024 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.