• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2025, Volume: 24, Issue: 2, Pages: 98-103

Original Article

UV-Spectrophotometric Evaluation of the Stability of Ciprofloxacin Eye Drops at Various Temperature Conditions

Abstract

Ciprofloxacin eye drops, a topical antibiotic for ocular diseases, is commonly obtained “over the counter,” and people are not educated about the importance of storage of the medications, thus interfering with their stability. This also leads to the emergence of antibiotic resistance due to the loss of its potency. Since the room temperature in the Southern India is higher (>40°C) during summers, it is possible that there may be some amount of degradation of ciprofloxacin. Hence, the aim of the study was to estimate the effect of different storage temperatures on the potency of Ciprofloxacin at different time intervals. To evaluate the potency of 0.3% Ciprofloxacin eye drops at different storage temperatures for a period of 90 days using UV Spectrophotometer. 28 dropper bottles of 0.3% Ciprofloxacin (10 ml) were purchased from CMC Hospital pharmacy, belonging to the same batch and same brand. After randomization, 7 samples were taken as a baseline and assessed. The remaining 21 samples were divided among 3 groups (groups A, B and C) and stored at different 3 storage conditions (air-conditioned room temperature, room temperature, oven temperature), with 7 samples in each group. Concentrations of ciprofloxacin were evaluated at different time intervals at 3 different storage temperatures (25°C, 30°C, 40°C) using UV Spectrophotometer and analysed for its degradation. The 0.3% Ciprofloxacin eye drop concentration under simulated use conditions was found to be between 90% and 110% of its initial baseline value at different time intervals and three distinct storage settings.

Keywords: Ciprofloxacin, Eye-drops, Antibiotic-resistance, Stability, UV-Spectrophotometer, Fluroquinolones

References

  1. Adenis JP, Colin J, Verin P, Riss I, Saint-Blancat P. Ciprofloxacin Ophthalmic Solution in the Treatment of Conjunctivitis and Blepharitis: A Comparison with Fusidic Acid. European Journal of Ophthalmology. 1996;6(4):368–374. Available from: https://dx.doi.org/10.1177/112067219600600404
  2. Dafale NA, Semwal UP, Agarwal PK, Sharma P, Singh GN. Development and validation of microbial bioassay for quantification of Levofloxacin in pharmaceutical preparations. Journal of Pharmaceutical Analysis. 2015;5(1):18–26. Available from: https://dx.doi.org/10.1016/j.jpha.2014.07.007
  3. González-González O, Ramirez IO, Ramirez BI, O'Connell P, Ballesteros MP, Torrado JJ, et al. Drug Stability: ICH versus Accelerated Predictive Stability Studies. Pharmaceutics. 2022;14(11):1–21. Available from: https://dx.doi.org/10.3390/pharmaceutics14112324
  4. Hyndiuk RA, Eiferman RA, Caldwell DR, Rosenwasser GO, Santos CI, Katz HR, et al. Comparison of Ciprofloxacin Ophthalmic Solution 0.3% to Fortified Tobramycin-Cefazolin in Treating Bacterial Corneal Ulcers. Ophthalmology. 1996;103(11):1854–1863. Available from: https://dx.doi.org/10.1016/s0161-6420(96)30416-8
  5. Youssef AAA, Cai C, Dudhipala N, Majumdar S. Design of Topical Ocular Ciprofloxacin Nanoemulsion for the Management of Bacterial Keratitis. Pharmaceuticals. 2021;14(3):1–19. Available from: https://dx.doi.org/10.3390/ph14030210
  6. Miller D. Update on the Epidemiology and Antibiotic Resistance of Ocular Infections. Middle East African Journal of Ophthalmology. 2017;24(1):30–42. Available from: https://doi.org/10.4103/meajo.meajo_276_16
  7. Sri-in J, Sisan W, Kingkhangphloo P, Jutasompakorn P, Chandranipapongse W, Chatsiricharoenkul S, et al. Stability and Sterility of Extemporaneously Prepared 0.01% Atropine Ophthalmic Solution in Artificial Tears and Balanced Salt Solution. Siriraj Medical Journal. 2022;74(2):91–99. Available from: https://dx.doi.org/10.33192/smj.2022.12
  8. Naveed S, Waheed N. Simple UV Spectrophotometric Assay Of Ciprofloxacin. Mintage journal of Pharmaceutical & Medical Sciences. 2014;3(Suppl 4):10–13. Available from: https://www.mjpms.in/articles/simple-uv-spectrophotometric-assay-of-ciprofloxacin.pdf
  9. Ocan M, Nakalembe L, Otike C, Omali D, Buzibye A, Nsobya S. Pharmacopeial quality of artemether–lumefantrine anti-malarial agents in Uganda. Malaria Journal. 2023;22(1):1–11. Available from: https://dx.doi.org/10.1186/s12936-023-04600-8
  10. Weir RE, Zaidi FH, Charteris DG, Bunce C, Soltani M, Lovering AM. Variability in the content of Indian generic ciprofloxacin eye drops. British Journal of Ophthalmology. 2005;89(9):1094–1096. Available from: https://doi.org/10.1136/bjo.2004.059519
  11. MAAM, Mando Z. Studying the Accelerated Photostability of Ciprofloxacin and Lomefloxacin in Tablets and Eye drops. International Journal of Pharmaceutical Sciences and Research. 2014;5(9):3646–3652. Available from: https://doi.org/10.13040/IJPSR.0975-8232.5(9).3646-52
  12. Prabhu SSN, Dibu J, Wilfred P, Chaudhary DK, Jeyaraj C, Shanthi M, et al. Quantitative estimation of isoniazid content in the commercially available and government-supplied formulations. Indian Journal of Tuberculosis. 2020;67(1):94–97. Available from: https://dx.doi.org/10.1016/j.ijtb.2018.10.002

Copyright

© 2025 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.