• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2023, Volume: 22, Issue: 3, Pages: 113-123

Review Article

A Review on 1,2,3 - Triazole & Piperazine Derivatives with Various Biological Activities

Abstract

The largest family of organic molecules in organic chemistry are heterocyclic compounds. A heterocyclic compound is created when an oxygen, nitrogen, sulphur, or atom of a similar element is included in place of a carbon atom. Heterocyclic compounds play a crucial role in daily living. It has a wide scope of uses in agrochemicals and medicinal chemistry. One of a pair of chemical compounds known as triazoles and Piperazine, with the molecular formula C2H3N3 and C5H5N. A fundamental aromatic heterocyclic scaffold is 1,2,3-triazole and piperazine. Because of its structural characteristics, these moiety’s are valuable in material science and due to its extensive application in chemistry, these can also be synthesized from readily available compounds. This literature review sheds light on the fact that 1,2,3-triazole and piperazine of hetero compounds are profoundly receptive and are known to possess potent diverse activities like, analgesic, anti-HIV, antimalarial, antiviral, anti-inflammatory, anticancer, antibacterial, antifungal, anthelmintic, and so forth. In conclusion numerous biological actions of the Piperazine and 1,2,3-Triazole derivatives of heterocyclic compounds were detailed and reviewed in this review.

Keywords: 1,2,3 - Triazole; Biological activities; Piperazine; Anticancer Activity

References

  1. Bazgir MM, Khanaposhtani AA, Sooski. 2008;18:5800–5803.
  2. Shinde DB, Aaglawe MJ, Dhule SS, Bahekar SS, Wakte PS. J. Kor. Chem. Sty. 2003;47:133–136.
  3. Kozikowski. Pergamon Press. 1984.
  4. Lipshutz BH. Chem Rev. 1986;86:795.
  5. Shipman M. Contemp. Org.Synth. 1995.
  6. Zaharia V, Ignat A, Palibroda N, Ngameni B, Kuete V, Fokunang CN, et al. Synthesis of some p-toluenesulfonyl-hydrazinothiazoles and hydrazino-bis-thiazoles and their anticancer activity. European Journal of Medicinal Chemistry. 2010;45(11):5080–5085. Available from: https://doi.org/10.1016/j.ejmech.2010.08.017
  7. Karegoudar P, Karthikeyan MS, Prasad DJ, Mahalinga M, Holla BS, Kumari NS. Synthesis of some novel 2,4-disubstituted thiazoles as possible antimicrobial agents. European Journal of Medicinal Chemistry. 2008;43(2):261–267. Available from: https;//doi.org/10.1016/j.ejmech.2007.03.014
  8. Mayhoub AS, Khaliq M, Botting C, Li Z, Kuhn RJ, Cushman M. An investigation of phenylthiazole antiflaviviral agents. Bioorganic & Medicinal Chemistry. 2011;19(12):3845–3854. Available from: https://doi.org/10.1016/j.bmc.2011.04.041
  9. Goncales CEP, Araldi D, Panatieri RB, Rocha JBT, Zeni G, Nogueira CW. Antinociceptive properties of acetylenic thiophene and furan derivatives: Evidence for the mechanism of action. Life Sciences. 2005;76(19):2221–2234. Available from: https://doi.org/10.1016/j.lfs.2004.10.038
  10. Dawood KM, Abdel-Gawad H, Rageb EA, Ellithey M, Mohamed HA. Synthesis, anticonvulsant, and anti-inflammatory evaluation of some new benzotriazole and benzofuran-based heterocycles. Bioorganic & Medicinal Chemistry. 2006;14(11):3672–3680. Available from: https://doi.org/10.1016/j.bmc.2006.01.033
  11. Mabkhot YN, Kaal NA, Alterary S, Al-Showiman SS, Barakat A, Ghabbour HA, et al. Synthesis, In-Vitro Antibacterial, Antifungal, and Molecular Modeling of Potent Anti-Microbial Agents with a Combined Pyrazole and Thiophene Pharmacophore. Molecules. 2015;20(5):8712–8729. Available from: https://doi.org/10.3390/molecules20058712
  12. Malah TE, Nour HF, Satti AAE, Hemdan BA, El-Sayed WA. Design, Synthesis, and Antimicrobial Activities of 1,2,3-Triazole Glycoside Clickamers. Molecules. 2020;25(4):790. Available from: https://doi.org/ 10.3390/molecules25040790
  13. Gondru R, Kanugala S, Raj S, Kumar CG, Pasupuleti M, Banothu J, et al. 1,2,3-triazole-thiazole hybrids: Synthesis, in vitro antimicrobial activity and antibiofilm studies. Bioorganic & Medicinal Chemistry Letters. 2021;33:127746. Available from: https://doi.org/10.1016/j.bmcl.2020.127746
  14. Kaproń B, Czarnomysy R, Wysokiński M, Andrys R, Musilek K, Angeli A, et al. 1,2,4-Triazole-based anticonvulsant agents with additional ROS scavenging activity are effective in a model of pharmacoresistant epilepsy. Journal of Enzyme Inhibition and Medicinal Chemistry. 2020;35(1):993–1002. Available from: https://doi.org/10.1080/14756366.2020.1748026
  15. Azim T, Wasim M, Akhtar MS, Akram I. An in vivo evaluation of anti-inflammatory, analgesic and anti-pyretic activities of newly synthesized 1, 2, 4 Triazole derivatives. BMC Complementary Medicine and Therapies. 2021;21(1):1–5. Available from: https://doi.org/10.1186/s12906-021-03485-x
  16. Dai ZCC, Chen YFF, Zhang M, Li SKK, Yang TTT, Shen L, et al. Synthesis and antifungal activity of 1,2,3-triazole phenylhydrazone derivatives. Organic & Biomolecular Chemistry. 2015;13(2):477–486. Available from: https://doi.org/10.1039/C4OB01758G
  17. Paprocka R, Kołodziej P, Wiese-Szadkowska M, Helmin-Basa A, Bogucka-Kocka A. Evaluation of Anthelmintic and Anti-Inflammatory Activity of 1,2,4-Triazole Derivatives. Molecules. 2022;27(14):4488. Available from: https://doi.org/10.3390/molecules27144488
  18. Gupta JK, Mishra P. Antimicrobial and anthelmintic activities of some newly synthesized triazoles. Asian Journal of Pharmaceutical and Clinical Research. 2017;10(6):139. Available from: https://doi.org/10.22159/ajpcr.2017.v10i6.17800
  19. Silalai P, Jaipea S, Tocharus J, Athipornchai A, Suksamrarn A, Saeeng R. New 1,2,3-Triazole-genipin Analogues and Their Anti-Alzheimer’s Activity. ACS Omega. 2022;7(28):24302–24316. Available from: https://doi.org/10.1021/acsomega.2c01593
  20. Oramas-Royo, López-Rojas, Amesty, Gutiérrez, Flores, Martín-Rodríguez, et al. Synthesis and Antiplasmodial Activity of 1,2,3-Triazole-Naphthoquinone Conjugates. Molecules. 2019;24(21):3917. Available from: https://doi.org/10.3390/molecules24213917
  21. Shaikh MH, Subhedar DD, Nawale L, Sarkar D, Khan FAK, Sangshetti JN, et al. 1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study. Med Chem Comm. 2015;6(6):1104–1116. Available from: https://doi.org/10.1039/C5MD00057B
  22. Gogoi K, Baishya G, Saikia B, Barua NC, Dohutia C, Verma AK, et al. Antimalarial activity of a novel series of artemisinin-derived 1, 2, 3-triazole dimers. Asian Pacific Journal of Tropical Medicine. 2019;12(5):195. Available from: https://doi.org/10.4103/1995-7645.259240
  23. Feng LS, Zheng MJ, Zhao F, Liu D. 1,2,3‐Triazole hybrids with anti‐HIV‐1 activity. Archiv der Pharmazie. 2021;354(1). Available from: https://doi.org/10.1002/ardp.202000163
  24. Bourakadi KE, Mekhzoum MEM, Saby C, Morjani H, Chakchak H, Merghoub N, et al. Synthesis, characterization and in vitro anticancer activity of thiabendazole-derived 1,2,3-triazole derivatives. New Journal of Chemistry. 2020;44(28):12099–12106. Available from: https://doi.org/10.1039/C9NJ05685H
  25. Le TT, Le PTK, Dam HTT, Vo DD, Le TT. Anticancer Activity of New 1,2,3-Triazole-Amino Acid Conjugates. Molbank. 2021;2021(2):1204. Available from: https://doi.org/10.3390/M1204
  26. Lakkakula R, Roy A, Mukkanti K, Sridhar G. Synthesis and Anticancer Activity of 1,2,3-Triazole Fused N-Arylpyrazole Derivatives. Russian Journal of General Chemistry. 2019;89(4):831–835. Available from: https://doi.org/10.1134/S1070363219040315
  27. Pokhodylo N, Shyyka O, Matiychuk V. Synthesis of 1,2,3-Triazole Derivatives and Evaluation of their Anticancer Activity. Scientia Pharmaceutica. 2013;81(3):663–676. Available from: https://doi.org/10.3797/scipharm.1302-04
  28. Lima-Neto RG, Cavalcante NNM, Srivastava RM, Junior FJBM, Wanderley AG, Neves RP, et al. Synthesis of 1,2,3-Triazole Derivatives and in Vitro Antifungal Evaluation on Candida Strains. Molecules. 2012;17(5):5882–5892. Available from: https://doi.org/10.3390/molecules17055882
  29. Liu T, Weng Z, Dong X, Chen L, Ma L, Cen S, et al. Design, Synthesis and Biological Evaluation of Novel Piperazine Derivatives as CCR5 Antagonists. PLoS ONE. 2013;8(1):53636. Available from: https://doi.org/10.1371/journal.pone.0053636
  30. Wang BLL, Zhan YZZ, Zhang LYY, Zhang YY, Zhang XY, Li ZMM. Synthesis and Fungicidal Activities of Novel 1,2,4-Triazole Thione Derivatives Containing 1,2,3-Triazole and Substituted Piperazine Moieties. Phosphorus, Sulfur, and Silicon and the Related Elements. 2016;191(1):1–7. Available from: https://doi.org/10.1080/10426507.2015.1085040
  31. Jadhav RP, Raundal HN, Patil AA, Bobade VD. Synthesis and biological evaluation of a series of 1,4-disubstituted 1,2,3-triazole derivatives as possible antimicrobial agents. Journal of Saudi Chemical Society. 2017;21(2):152–159. Available from: https://doi.org/10.1016/j.jscs.2015.03.003
  32. Wang Y, Xu K, Bai G, Huang L, Wu Q, Pan W, et al. Synthesis and Antifungal Activity of Novel Triazole Compounds Containing Piperazine Moiety. Molecules. 2014;19(8):11333–11340. Available from: https://doi.org/10.3390/molecules190811333
  33. Danne AB, Deshpande MV, Sangshetti JN, Khedkar VM, Shingate BB. New 1,2,3-Triazole-Appended Bis-pyrazoles: Synthesis, Bioevaluation, and Molecular Docking. ACS Omega. 2021;6(38):24879–24890. Available from: https://doi.org/10.1021/acsomega.1c03734
  34. Chen QM, Li Z, Tian GX, Chen YM, Wu XH. 1,2,3-triazole-dithiocarbamate-naphthalimides: Synthesis, characterization, and biological evaluation. Journal of Chemical Research. 2021;45(3-4):258–264. Available from: https://doi.org/10.1177/1747519820966971
  35. Sriram D, Banerjee D, Yogeeswari P. Efavirenz Mannich bases: Synthesis, anti-HIV and antitubercular activities. Journal of Enzyme Inhibition and Medicinal Chemistry. 2009;24(1):1–5. Available from: https://doi.org/10.1080/14756360902784425
  36. Bogdanov AV, Vazykhova AM, Khasiyatullina NR, Krivolapov DB, Dobrynin AB, Voloshina AD, et al. New N-Mannich bases obtained from isatin and piperazine derivatives: the synthesis and evaluation of antimicrobial activity. Chemistry of Heterocyclic Compounds. 2016;52(1):25–30. Available from: https://doi.org/10.1007/s10593-016-1826-6
  37. Paneth A, Trotsko N, Popiołek Ł, Grzegorczyk A, Krzanowski T, Janowska S, et al. Synthesis and Antibacterial Evaluation of Mannich Bases Derived from 1,2,4‐Triazole. Chemistry & Biodiversity. 2019;16(10):1900377. Available from: https://doi.org/10.1002/cbdv.201900377
  38. Isloor AM, Kalluraya B, Shetty P. Regioselective reaction: Synthesis, characterization and pharmacological studies of some new Mannich bases derived from 1,2,4-triazoles. European Journal of Medicinal Chemistry. 2009;44(9):3784–3787. Available from: https://doi.org/10.1016/j.ejmech.2009.04.038
  39. Tan W, Li Q, Wang H, Liu Y, Zhang J, Dong F, et al. Synthesis, characterization, and antibacterial property of novel starch derivatives with 1,2,3-triazole. Carbohydrate Polymers. 2016;142:1–7. Available from: https://doi.org/10.1016/j.carbpol.2016.01.007
  40. Gan LLL, Zhang HZZ, Zhou CHH. Design, Synthesis and Relational Biological Evaluation of Novel Diphenylpiperazine 1,2,3-triazole Derivatives. Indian Journal of Pharmaceutical Sciences. 2018;80(6):1045–1056. Available from: https://doi.org/10.4172/pharmaceutical-sciences.1000455
  41. El Malah T, Nour HF, Satti AAE, Hemdan BA, El-Sayed WA. Design, Synthesis, and Antimicrobial Activities of 1,2,3-Triazole Glycoside Clickamers. Molecules. 2020;25(4):790.
  42. Khanage SG, Raju A, Mohite PB, Pandhare RB. Analgesic activity of some 1, 2, 4-triazole heterocycles clubbed with pyrazole, tetrazole, isoxazole and pyrimidine. Advanced Pharmaceutical Bulletin. 2013;3(1):13. Available from: https://doi.org/10.5681/apb.2013.003
  43. Lima JADC, Silva JDF, Santos CS, Caiana RRA, Moraes MMD, Câmara CAGD, et al. Synthesis of new 1,4-disubstituted 1,2,3-triazoles using the CuAAC reaction and determination of their antioxidant activities. Anais da Academia Brasileira de Ciências. 2021;93(3). Available from: https://doi.org/10.1590/0001-3765202120201672
  44. Montes-Ávila J, Sarmiento-Sánchez JI, Delgado-Vargas F, Rivero IA, Díaz-Camacho SP, Uribe-Beltrán M. Antioxidant activity and antimicrobial evaluation of 1-benzyl-1, 2, 3-triazole. 2016. Available from: https://doi.org/10.15174/au.2016.937
  45. Deshmukh TR, Khare SP, Krishna VS, Sriram D, Sangshetti JN, Khedkar VM, et al. Synthesis, bioevaluation and molecular docking study of new piperazine and amide linked dimeric 1,2,3-triazoles. Synthetic Communications. 2020;50(2):271–288. Available from: https://doi.org/10.1080/00397911.2019.1695275
  46. Gupta JK, Mishra P. Antimicrobial and anthelmintic activities of some newly synthesized triazoles. Asian Journal of Pharmaceutical and Clinical Research. 2017;10(6):139. Available from: https://doi.org/10.22159/ajpcr.2017.v10i6.17800
  47. Dastjerdi HF, Naderi N, Nematpour M, Rezaee E, Mahboubi-Rabbani M, Ebrahimi M, et al. Design, synthesis and anti-diabetic activity of novel 1, 2, 3-triazole-5-carboximidamide derivatives as dipeptidyl peptidase-4 inhibitors. Journal of Molecular Structure. 2020;1221:128745. Available from: https://doi.org/10.1016/j.molstruc.2020.128745
  48. Kaya B, Garima V, Temel, HE, Kaplancıklı ZA. Synthesis and biological evaluation of novel piperazine containing hydrazone derivatives. Journal of Chemistry. 2016. Available from: https://doi.org/10.1155/2016/5878410
  49. Assis SPDO, Silva MTD, Oliveira RND, Lima VLDM. Synthesis and Anti-Inflammatory Activity of New Alkyl-Substituted Phthalimide 1H-1,2,3-Triazole Derivatives. The Scientific World Journal. 2012;2012:1–7. Available from: https://doi.org/10.1100/2012/925925
  50. Stefely JA, Palchaudhuri R, Miller PA, Peterson RJ, Moraski GC, Hergenrother PJ, et al. N-((1-Benzyl-1H-1,2,3-triazol-4-yl)methyl)arylamide as a New Scaffold that Provides Rapid Access to Antimicrotubule Agents: Synthesis and Evaluation of Antiproliferative Activity Against Select Cancer Cell Lines. Journal of Medicinal Chemistry. 2010;53(8):3389–3395. Available from: https://doi.org/10.1021/jm1000979
  51. Pulipati L, Yogeeswari P, Sriram D, Kantevari S. Click-based synthesis and antitubercular evaluation of novel dibenzo[ b , d ]thiophene-1,2,3-triazoles with piperidine, piperazine, morpholine and thiomorpholine appendages. Bioorganic & Medicinal Chemistry Letters. 2016;26(11):2649–2654. Available from: https://doi.org/10.1016/j.bmcl.2016.04.015
  52. Zhang S, Xu Z, Gao C, Ren QCC, Chang L, Lv ZSS, et al. Triazole derivatives and their anti-tubercular activity. European Journal of Medicinal Chemistry. 2017;138:501–513. Available from: https://doi.org/10.1016/j.ejmech.2017.06.051
  53. Ali AA, Gogoi D, Chaliha AK, Buragohain AK, Trivedi P, Saikia PJ, et al. Synthesis and biological evaluation of novel 1, 2, 3-triazole derivatives as anti-tubercular agents. Bioorganic & Medicinal Chemistry Letters. 2017;27(16):3698–3703. Available from: https://doi.org/10.1016/j.bmcl.2017.07.008
  54. Yan SJJ, Liu YJJ, Chen YLL, Liu LJ, Lin J. An efficient one-pot synthesis of heterocycle-fused 1,2,3-triazole derivatives as anti-cancer agents. Bioorganic & Medicinal Chemistry Letters. 2010;20(17):5225–5228. Available from: https://doi.org/10.1016/j.bmcl.2010.06.141
  55. Nagesh HN, Suresh N, Prakash GVSB, Gupta S, Rao JV, Sekhar KVGC. Synthesis and biological evaluation of novel phenanthridinyl piperazine triazoles via click chemistry as anti-proliferative agents. Medicinal Chemistry Research. 2015;24(2):523–532. Available from: https://doi.org/10.1007/s00044-014-1142-6
  56. Venkata SRG, C.Narkhede U, Jadhav VD, Naidu CG, Addada RR, Pulya S, et al. Quinoline Consists of 1H‐1,2,3‐Triazole Hybrids: Design, Synthesis and Anticancer Evaluation. ChemistrySelect. 2019;4(48):14184–14190. Available from: https://doi.org/10.1002/slct.201903938

Copyright

© 2023 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.