• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2022, Volume: 21, Issue: 1, Pages: 27-37

Original Article

Identification of Critical Factors Influencing the In-Vitro Dissolution o f Bicalutamide Tablets Prepared Using Madg Technique

Abstract

This study was aimed to utilize the Moisture Activated Dry Granulation (MADG) technique to formulate Bicalutamide tablet and identify critical factors influencing its dissolution. The Bicalutamide inclusion complex was formed using the kneading method. Aeroperl 300 was selected as an adsorbent, polyvinylpyrrolidone (PVP) K30 as a binder, Microcrystalline Cellulose (MCC) and Lactose Monohydrate (LMH) in1:1 ratio as fillers. Croscarmellose sodium (CCS) and neusilin were used as disintegrating agents, as they did not affect the disintegration time when hardness and compression force increased. Box Behnken experimental design was used to optimize formulations and was evaluated for pre and post-compression parameters. The optimized formulation was compared with the marketed and wet granulation formulation. In addition, the short term stability testing of the optimized batch was performed. The optimized inclusioncomplex of hydroxypropyl beta-cyclodextrin (HP-ß-CD) was selected based on a phase solubility study in 1:1 ratio with drug toimprove solubility. The optimized batch was prepared by MADG at granulator speed of 540rpm, using 4.30 % PVPK30, and 1.5 % Aeroperl 300. It showed a disintegration time of 208.33 sec.Percentage drug release was 95.02 % in 30 mins, and hardness 5.4 kg/cm2. The stability study results confirmed the stability of the tablets. The Bicalutamide tablet was successfully formulated using the MADG technique. The parameters affecting the in-vitro dissolution were identified and optimized, leading to better bioavailability.  

 

Keywords: Bicalutamide, Moisture Activated Dry Granulation technology (MADG), hydroxypropyl beta-cyclodextrin (HP-β-CD), Box Behnken design (BBD), Croscarmellose sodium

References

  1. Sharma DM, Kosalge SB, Lade SN. Review on Moisture Activated Dry Granulation Process. Pharmatutor. 2017;5(12):58–67. Available from: https://dx.doi.org/10.29161/pt.v5.i12.2017.58
  2. Moravkar KK, Ali TM, Pawar JN, Amin PD. Application of moisture activated dry granulation (MADG) process to develop high dose immediate release (IR) formulations. Advanced Powder Technology. 2017;28(4):1270–1280. Available from: https://dx.doi.org/10.1016/j.apt.2017.02.015
  3. Almutairy BK, Khafagy ES, Alalaiwe A, Aldawsari MF, Alshahrani SM, Alsulays BB, et al. Enhancing the Poor Flow and Tableting Problems of High Drug-Loading Formulation of Canagliflozin Using Continuous Green Granulation Process and Design-of-Experiment Approach. Pharmaceuticals. 2020;13(12):1`–17. Available from: https://dx.doi.org/10.3390/ph13120473
  4. Saikh M. Technical Note on Granulation Technology: a Way To Optimise Granules. Int J Pharm Sci Res. 2013;4(1):55–67.
  5. Mashinchian O, Johari-Ahar M, Ghaemi B, Rashidi M, Barar J, Omidi Y. Impacts of quantum dots in molecular detection and bioimaging of cancer. BioImpacts. 2014;4(3):149–166.
  6. Agrawal R, Naveen Y. Pharmaceutical Processing - A Review on Wet Granulation Technology. Int J Pharm Front Res. 2011;1:65–83.
  7. Mustafa M, Salih AF, Illzam EM, Sharifa AM, Suleiman M, Hussain SS. Prostate Cancer: Pathophysiology, Diagnosis, and Prognosis. J Dent Med Sci. 2016;15(6):4–11.
  8. Shinde AKJ, NSP, TSJ, HNM. Design and development of floating pulsatile drug delivery of losartan potassium. International Journal of Applied Pharmaceutics. 2020;12(4):218–227. Available from: https://dx.doi.org/10.22159/ijap.2020v12i4.37607
  9. Kulkarni VN, Kulkarni MV. Trends in Antibiotic Resistance among Major Bacterial Pathogens Isolated from Different Specimens at a Tertiary Care Hospital in India. Journal of Advances in Medical and Pharmaceutical Sciences. 2018;18:1–7. Available from: https://dx.doi.org/10.9734/jamps/2018/44300
  10. Meer T, Fule R, Khanna D, Amin P. Solubility modulation of bicalutamide using porous silica. Journal of Pharmaceutical Investigation. 2013;43(4):279–285. Available from: https://dx.doi.org/10.1007/s40005-013-0070-7
  11. Smith AA, Kannan K, Manavalan R, Rajendiran N. Spectral Characteristics of Bicalutamide Drug in Different Solvents and β-Cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2007;58(1-2):161–167. Available from: https://dx.doi.org/10.1007/s10847-006-9138-6
  12. Pokharkar VB, Malhi T, Mandpe L. Bicalutamide nanocrystals with improved oral bioavailability:<i>in vitro</i>and<i>in vivo</i>evaluation. Pharmaceutical Development and Technology. 2013;18(3):660–666. Available from: https://dx.doi.org/10.3109/10837450.2012.663391
  13. Szafraniec-Szczęsny J, Antosik-Rogóż A, Knapik-Kowalczuk J, Kurek M, Szefer E, Gawlak K, et al. Compression-Induced Phase Transitions of Bicalutamide. Pharmaceutics. 2020;12(5):1–21. Available from: https://dx.doi.org/10.3390/pharmaceutics12050438
  14. Kudarha R, Dhas NL, Pandey A, Belgamwar VS, Ige PP. Box–Behnken study design for optimization of bicalutamide-loaded nanostructured lipid carrier: stability assessment. Pharmaceutical Development and Technology. 2015;20(5):608–618. Available from: https://dx.doi.org/10.3109/10837450.2014.908305
  15. Szafraniec J, Antosik A, Knapik-Kowalczuk J, Chmiel K, Kurek M, Gawlak K. Enhanced dissolution of solid dispersions containing bicalutamide subjected to mechanical stress. International Journal of Pharmaceutics. 2018;542(1-2):18–26. Available from: https://dx.doi.org/10.1016/j.ijpharm.2018.02.040
  16. Dalvadi H, Parmar K, Yadav S. Spherical agglomeration to improve dissolution and micromeritic properties of an anticancer drug, Bicalutamide. Drug Development and Industrial Pharmacy. 2019;45(6):968–980. Available from: https://dx.doi.org/10.1080/03639045.2019.1585447
  17. Raval M, Patel J, Parikh R, Sheth N. Dissolution enhancement of chlorzoxazone using cogrinding technique. International Journal of Pharmaceutical Investigation. 2015;5(4):247–258. Available from: https://dx.doi.org/10.4103/2230-973x.167689
  18. Nanaki S, Eleftheriou RM, Barmpalexis P, Kostoglou M, Karavas E, Bikiaris D. Aprepitant Drug in Ternary Pharmaceutical Solid Dispersions with Soluplus® and Poloxamer 188 Prepared by Melt Mixing. Sci. 2019;1(1):1–22. Available from: https://dx.doi.org/10.3390/sci1010029
  19. Guntaka PCR, Lankalapalli S. A Comparative Study of Ledipasvir Solid Dispersion Technique Using Spray Drying and Hot-Melt Extrusion. International Journal of Pharmaceutical Sciences and Research. 2018;9(12):5145–5154. Available from: https://doi.org/10.13040/IJPSR.0975-8232.9(12).5145-54
  20. Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, et al. Understanding Pharmaceutical Quality by Design. The AAPS Journal. 2014;16(4):771–783. Available from: https://dx.doi.org/10.1208/s12248-014-9598-3
  21. Roy H, Rahaman A, Box S. Behnken design for optimization of formulation variables for fast dissolving tablet of urapidil. Asian J Pharm. 2018;12(3):946–954.
  22. Savjani KT, Gajjar AK, Savjani JK. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharmaceutics. 2012;2012:1–10. Available from: https://dx.doi.org/10.5402/2012/195727

Copyright

© 2022 Published by Krupanidhi Educational Trust. This is an open-access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/)

DON'T MISS OUT!

Subscribe now for latest articles and news.