Notice: Undefined offset: 1 in /var/www/jopcr.com/article-detail-page.php on line 103
Antihyperglycemic Effect of Novel Pyridazinone Derivative on the Alloxan-Induced Diabetes Model in Rats
 
  • P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2025, Volume: 24, Issue: 3, Pages: 179–184

Original Article

Antihyperglycemic Effect of Novel Pyridazinone Derivative on the Alloxan-Induced Diabetes Model in Rats

Abstract

Type 2 diabetes mellitus represents a significant and escalating global health concern. Projections estimate that the number of individuals living with diabetes will increase dramatically, rising from 425 million in 2017 to approximately 629 million by 2045. While available antidiabetic medications are effective, their use is frequently accompanied by adverse effects, including low blood sugar and digestive disturbances, underscoring the need for safer alternatives. Pyridazinones, a class of six-membered nitrogen-containing heterocycles with adjacent nitrogen atoms, have emerged as promising scaffolds in medicinal chemistry. Specifically, pyridazine-3-one, which features a carbonyl group at the third position, is recognized for its wide spectrum of biological activities. By introducing a benzoxazole ring onto the pyridazinone framework, researchers aim to enhance and explore novel antidiabetic properties in these derivatives. Thus, the novel compound 1-(5-chloro-1,3-benzoxazol-2-yl)-4-methyl-1,2-dihydropyridazine-3,6-dione has been synthesized and is proposed for evaluation as a potential antidiabetic agent.

Keywords: Diabetes mellitus, Pyridazinone, Benzoxazole

References

  1. George AM, Jacob AG, Fogelfeld L. Lean diabetes mellitus: An emerging entity in the era of obesity. World Journal of Diabetes. 2015;6(4):613–620. Available from: https://dx.doi.org/10.4239/wjd.v6.i4.613
  2. Karuranga S, Fernandes JDR, Huang Y, Malanda B. International Diabetes Federation. IDF Diabetes Atlas (8). (p. 150 pages) Brussels, Belgium. International Diabetes Federation. 2017.
  3. Beckman JA, Paneni F, Cosentino F, Creager MA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. European Heart Journal. 2013;34(31):2444–2452. Available from: https://dx.doi.org/10.1093/eurheartj/eht142
  4. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases. European Heart Journal. 2007;29(2):270–276. Available from: https://dx.doi.org/10.1093/eurheartj/ehm342
  5. McGovern A, Tippu Z, Hinton W, Munro N, Whyte M, Lusignan Sd. Comparison of medication adherence and persistence in type 2 diabetes: A systematic review and meta‐analysis. Diabetes, Obesity and Metabolism. 2018;20(4):1040–1043. Available from: https://dx.doi.org/10.1111/dom.13160
  6. Tisler M, Stanovnlk B. Comprehensive Heterocyclic Chemistry. 1984. 3(1).
  7. Husain A, Ahmad A, Bhandari A, Ram V. Synthesis And Antitubercular Activity Of Pyridazinone Derivatives. Journal of Chilean Chemical Society. 2011;56(3):778–780. Available from: https://scielo.conicyt.cl/pdf/jcchems/v56n3/art13.pdf
  8. Costas T, Besada P, Piras A, Acevedo L, Yañez M, Orallo F, et al. New pyridazinone derivatives with vasorelaxant and platelet antiaggregatory activities. Bioorganic & Medicinal Chemistry Letters. 2010;20(22):6624–6627. Available from: https://dx.doi.org/10.1016/j.bmcl.2010.09.031
  9. Seth S, Sharma A, Raj D. Pyridazinones: A Wonder Nucleus With Scaffold Of Pharmacological Activities. American Journal of Biological and Pharmaceutical Research. 2014;1(3):105–116. Available from: https://mcmed.us/dart/abstract/268/ajbpr
  10. Yaseen R, Pushpalatha H, Reddy GB, Ismael A, Ahmed A, Dheyaa A, et al. Design and synthesis of pyridazinone-substituted benzenesulphonylurea derivatives as anti-hyperglycaemic agents and inhibitors of aldose reductase – an enzyme embroiled in diabetic complications. Journal of Enzyme Inhibition and Medicinal Chemistry. 2016;31(6):1415–1427. Available from: https://dx.doi.org/10.3109/14756366.2016.1142986
  11. Elnima EI, Zubair MU, Al-Badr AA. Antibacterial and antifungal activities of benzimidazole and benzoxazole derivatives. Antimicrobial Agents and Chemotherapy. 1981;19(1):29–32. Available from: https://dx.doi.org/10.1128/aac.19.1.29
  12. Akbay A, Oren I, Temiz-Arpaci O, Aki-Sener E, Yalçin I. Synthesis and HIV-1 reverse transcriptase inhibitor activity of some 2,5,6-substituted benzoxazole, benzimidazole, benzothiazole and oxazolo(4,5-b)pyridine derivatives. Arzneimittelforschung Drug Research. 2003;53(4):266–271. Available from: https://doi.org/10.1055/s-0031-1297107
  13. Oksuzoglu E, Tekiner-Gulbas B, Alper S, Temiz-Arpaci O, Ertan T, Yildiz I, et al. Some benzoxazoles and benzimidazoles as DNA topoisomerase I and II inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry. 2008;23(1):37–42. Available from: https://dx.doi.org/10.1080/14756360701342516
  14. Kumar D, Jacob MR, Reynolds MB, Kerwin SM. Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1. Bioorganic & Medicinal Chemistry. 2002;10(12):3997–4004. Available from: https://dx.doi.org/10.1016/s0968-0896(02)00327-9
  15. Ashton WT, Sisco RM, Dong H, Lyons KA, He H, Doss GA, et al. Dipeptidyl peptidase IV inhibitors derived from β-aminoacylpiperidines bearing a fused thiazole, oxazole, isoxazole, or pyrazole. Bioorganic & Medicinal Chemistry Letters. 2005;15(9):2253–2258. Available from: https://dx.doi.org/10.1016/j.bmcl.2005.03.012
  16. El-Mofty SK, Scrutton MC, Serroni A, Nicolini C, Farber JL. Early, reversible plasma membrane injury in galactosamine-induced liver cell death. American Journal of Pathology. 1975;79(3):579–596. Available from: https://pubmed.ncbi.nlm.nih.gov/1137005/
  17. Al-Shamaony L, Al-Khazraji SM, Twaij HAA. Hypoglycaemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parameters in diabetic animals. Journal of Ethnopharmacology. 1994;43(3):167–171. Available from: https://dx.doi.org/10.1016/0378-8741(94)90038-8
  18. Andersen L, Dinesen B, Jørgensen PN, Poulsen F, Røder ME. Enzyme immunoassay for intact human insulin in serum or plasma. Clinical Chemistry. 1993;39(4):578–582. Available from: https://dx.doi.org/10.1093/clinchem/39.4.578
  19. Drabkin DL, JMA. Spectrophotometric constants for common haemoglobin derivatives in human, dog and rabbit blood. Journal of Biological Chemistry. 1932;98(2):719–733. Available from: https://doi.org/10.1016/S0021-9258(18)76122-X
  20. Nayak SS, Pattabiraman TN. A new colorimetric method for the estimation of glycosylated hemoglobin. Clinica Chimica Acta. 1981;109(3):267–274. Available from: https://dx.doi.org/10.1016/0009-8981(81)90312-0
  21. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes. 2005;54(Suppl 2):S97–S107. Available from: https://doi.org/10.2337/diabetes.54.suppl_2.s97
  22. Colca JR, Kotagal N, Brooks CL, Lacy PE, Landt M, McDaniel ML. Alloxan inhibition of a Ca2+- and calmodulin-dependent protein kinase activity in pancreatic islets. Journal of Biological Chemistry. 1983;258(12):7260–7263. Available from: https://dx.doi.org/10.1016/s0021-9258(18)32168-9
  23. Alberti KGMM, Press CM. The biochemistry of the complication of diabetes mellitus. In: Keen H, Jarrett J., eds. Complications of Diabetes (2). (pp. 231-270) London. Edward Arnold Ltd.. 1982.
  24. Koenig RJ, Peterson CM, Jones RL, Saudek C, Lehrman M, Cerami A. Correlation of Glucose Regulation and Hemoglobin A<sub>Ic</sub>in Diabetes Mellitus. New England Journal of Medicine. 1976;295(8):417–420. Available from: https://dx.doi.org/10.1056/nejm197608192950804
  25. Jackson RL, Hess RL, England JD. Hemoglobin a1c values in children with overt diabetes maintained in varying degrees of control. Diabetes Care. 1979;2(5):391–395. Available from: https://doi.org/10.2337/diacare.2.5.391
  26. Sheela CG, Augusti KT. Antidiabetic effects of S-allyl cysteine sulphoxide isolated from garlic Allium sativum Linn. Indian Journal of Experimental Biology (IJEB). 1992;30(6):523–526. Available from: https://pubmed.ncbi.nlm.nih.gov/1506036/

Copyright

© 2025 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.