Notice: Undefined offset: 1 in /var/www/jopcr.com/article-detail-page.php on line 103
Peptidomimetics : A New Era in Drug Discovery
 
  • P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2025, Volume: 24, Issue: 3, Pages: 129–137

Review Article

Peptidomimetics : A New Era in Drug Discovery

Abstract

Peptides are made up from amino acid sequences which possess importance in various biological processes, making them attractive candidates for therapeutic development. But due to the limitations, such as susceptibility to proteolysis, Blood–brain barrier, poor bioavailability, short half-life, and rapid clearance, suppress their applications in drug development. Peptidomimetics, designed by modification in side chain or the backbone of peptide to mimic the structural and functional properties of peptides to overcome these limitations. After the modification they emerged as a promising class of therapeutic agents in drug discovery and development. Various synthetic strategies such as replacement of natural amino acids with unnatural amino acid, cyclization, implemented to develop peptidomimetics from peptide. Peptidomimetics shows antimicrobial and anticancer properties, also work as immunomodulator. This comprehensive review will help the reader to understand concept of peptidomimetics, their design strategies, diverse applications in various therapeutic areas, limitation and future directions. Graphical Abstract

Keywords: Peptidomimetics, Bioavailability, Antimicrobial Activity, Stability

References

  1. Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discovery Today. 2015;20(1):122–128. Available from: https://dx.doi.org/10.1016/j.drudis.2014.10.003
  2. Qvit N, Rubin SJS, Urban TJ, Mochly-Rosen D, Gross ER. Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discovery Today. 2017;22(2):454–462. Available from: https://dx.doi.org/10.1016/j.drudis.2016.11.003
  3. Trabocchi A, Guarna A. Peptidomimetics in Organic and Medicinal Chemistry. Wiley. 2014.
  4. Klebe G. Peptidomimetics. (pp. 189-208) Springer eBooks . 2013.
  5. Giannis A, Rübsam F. Peptidomimetics in Drug Design. In: Advances in Drug Research. (pp. 1-78) 1997.
  6. Goodman M, Ro S. MEW., ed. Burger's Medicinal Chemistry and Drug Discovery. (pp. 803-861) John Wiley & Sons, Inc. 1995.
  7. Farmer PS, Ariëns EJ. Speculations on the design of nonpeptidic peptidomimetics. Trends in Pharmacological Sciences. 1982;3:362–365. Available from: https://dx.doi.org/10.1016/0165-6147(82)91184-1
  8. Ko E, Liu J, Perez LM, Lu G, Schaefer A, Burgess K. Universal Peptidomimetics. Journal of the American Chemical Society. 2011;133(3):462–477. Available from: https://dx.doi.org/10.1021/ja1071916
  9. Hruby VJ, Qiu W, Okayama T, Soloshonok VA. Design of nonpeptides from peptide ligands for peptide receptors. Methods in Enzymology. 2002;p. 91–123. Available from: https://doi.org/10.1016/s0076-6879[02]43129-1
  10. Goodman M, Shao H. Peptidomimetic building blocks for drug discovery: An overview. Pure and Applied Chemistry. 1996;68(6):1303–1308. Available from: https://dx.doi.org/10.1351/pac199668061303
  11. Grauer A, König B. Peptidomimetics – A Versatile Route to Biologically Active Compounds. European Journal of Organic Chemistry. 2009;2009(30):5099–5111. Available from: https://dx.doi.org/10.1002/ejoc.200900599
  12. Kunal P, Anwar C, Priya D, Rushikesh G, Prashant S, Rutik P, et al. A Review on Introduction, Importance and Applications of Peptidomimetics. Asian Journal of Pharmaceutical Research and Development. 2024;12(6):86–92. Available from: https://dx.doi.org/10.22270/ajprd.v12i6.1481
  13. Gentilucci L, Tolomelli A, Squassabia F. Peptides and Peptidomimetics in Medicine, Surgery and Biotechnology. Current Medicinal Chemistry. 2006;13(20):2449–2466. Available from: https://dx.doi.org/10.2174/092986706777935041
  14. Wu YD, Gellman S. Peptidomimetics. Accounts of Chemical Research. 2008;41(10):1231–1232. Available from: https://dx.doi.org/10.1021/ar800216e
  15. Tamamura H, Kobayakawa T, Ohashi N. Introduction to Mid-size Drugs and Peptidomimetics. Springer Briefs in Pharmaceutical Science & Drug Development. 2018;p. 1–16. Available from: https://doi.org/10.1007/978-981-10-7691-6_1
  16. Petri GL, Martino SD, Rosa MD. Peptidomimetics: An Overview of Recent Medicinal Chemistry Efforts toward the Discovery of Novel Small Molecule Inhibitors. Journal of Medicinal Chemistry. 2022;65(11):7438–7475. Available from: https://dx.doi.org/10.1021/acs.jmedchem.2c00123
  17. Marshall GR, Ballante F. Limiting Assumptions in the Design of Peptidomimetics. Drug Development Research. 2017;78(6):245–267. Available from: https://dx.doi.org/10.1002/ddr.21406
  18. Orner BP, Ernst JT, Hamilton AD. Toward Proteomimetics:  Terphenyl Derivatives as Structural and Functional Mimics of Extended Regions of an α-Helix. Journal of the American Chemical Society. 2001;123(22):5382–5383. Available from: https://dx.doi.org/10.1021/ja0025548
  19. Pelay‐Gimeno M, Glas A, Koch O, Grossmann TN. Structure‐Based Design of Inhibitors of Protein–Protein Interactions: Mimicking Peptide Binding Epitopes. Angewandte Chemie International Edition. 2015;54(31):8896–8927. Available from: https://dx.doi.org/10.1002/anie.201412070
  20. Ripka AS, Rich DH. Peptidomimetic design. Current Opinion in Chemical Biology. 1998;2(4):441–452. Available from: https://dx.doi.org/10.1016/s1367-5931(98)80119-1
  21. Lenci E, Trabocchi A. Peptidomimetic toolbox for drug discovery. Chemical Society Reviews. 2020;49(11):3262–3277. Available from: https://dx.doi.org/10.1039/d0cs00102c
  22. Tomasella C, Floris M, Guccione S, Pappalardo M, Basile L. Peptidomimetics in Silico. Molecular Informatics. 2021;40(3). Available from: https://doi.org/10.1002/minf.202000087
  23. Floris M, Moro S. Mimicking Peptides… In Silico. Molecular Informatics. 2012;31(1):12–20. Available from: https://dx.doi.org/10.1002/minf.201100093
  24. Kharb R, Rana M, Sharma PC, Yar MS. Therapeutic importance of peptidomimetics in medicinal chemistry. Journal of Chemical and Pharmaceutical Research. 2011;(6) 173–186. Available from: https://www.jocpr.com/articles/therapeutic-importance-of-peptidomimetics-in-medicinal-chemistry.pdf
  25. Abdildinova A, Kurth MJ, Gong Y. Solid‐Phase Synthesis of Peptidomimetics with Peptide Backbone Modifications. Asian Journal of Organic Chemistry. 2021;10(9):2300–2317. Available from: https://dx.doi.org/10.1002/ajoc.202100264
  26. Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic & Medicinal Chemistry. 2018;26(10):2700–2707. Available from: https://dx.doi.org/10.1016/j.bmc.2017.06.052
  27. Magner JA. Emil Fischer (1852???1919) The Endocrinologist. 2004;14(5):239–244. Available from: https://dx.doi.org/10.1097/01.ten.0000139005.32218.07
  28. Reddy VP. Fluorinated Amino Acids, Peptides, and Proteins. (pp. 101-132) Elsevier eBooks . 2015.
  29. Home P. The evolution of insulin therapy. Diabetes Research and Clinical Practice. 2021;175:108816. Available from: https://doi.org/10.1016/j.diabres.2021.108816
  30. Giannis A, Kolter T. Peptidomimetics for Receptor Ligands—Discovery, Development, and Medical Perspectives. Angewandte Chemie International Edition in English. 1993;32(9):1244–1267. Available from: https://dx.doi.org/10.1002/anie.199312441
  31. Adang AEP, Hermkens PHH, Linders JTM, Ottenheijm HCJ, Staveren CJv. Case histories of peptidomimetics: Progression from peptides to drugs. Recueil des Travaux Chimiques des Pays-Bas. 1994;113(2):63–78. Available from: https://dx.doi.org/10.1002/recl.19941130202
  32. Dudak FC, Boyaci IH, Orner BP. The Discovery of Small-Molecule Mimicking Peptides through Phage Display. Molecules. 2011;16(1):774–789. Available from: https://dx.doi.org/10.3390/molecules16010774
  33. Moore GJ. Designing peptide mimetics. Trends in Pharmacological Sciences. 1994;15(4):124–129. Available from: https://doi.org/10.1016/0165-6147[94]90049-3
  34. Liu Y, Zhang L, Wan J, Li Y, Xu Y, Pan Y. Design and synthesis of cyclo[-Arg-Gly-Asp-Ψ(triazole)-Gly-Xaa-] peptide analogues by click chemistry. Tetrahedron. 2008;64(47):10728–10734. Available from: https://dx.doi.org/10.1016/j.tet.2008.08.090
  35. Zhang Q, Soulère L, Queneau Y. Amide bioisosteric replacement in the design and synthesis of quorum sensing modulators. European Journal of Medicinal Chemistry. 2024;273:116525. Available from: https://dx.doi.org/10.1016/j.ejmech.2024.116525
  36. Li P, Roller P, Xu J. Current Synthetic Approaches to Peptide and Peptidomimetic Cyclization. Current Organic Chemistry. 2002;6(5):411–440. Available from: https://dx.doi.org/10.2174/1385272024604970
  37. Li Z, Zhang Z, Chen Y, Tang S, Lin T, Huang J, et al. Design, synthesis and evaluation of -amino acid-containing peptidomimetics targeting the polo-box domain of polo-like kinase 1. Bioorganic Chemistry. 2019;85:534–540. Available from: https://dx.doi.org/10.1016/j.bioorg.2019.02.022
  38. Castro TG, Melle-Franco M, Sousa CEA, Cavaco-Paulo A, Marcos JC. Non-Canonical Amino Acids as Building Blocks for Peptidomimetics: Structure, Function, and Applications. Biomolecules. 2023;13(6):981. Available from: https://dx.doi.org/10.3390/biom13060981
  39. Brady SF, Paleveda WJ, Arison BH, Saperstein R, Brady EJ, Raynor K, et al. Approaches to peptidomimetics which serve as surrogates for the cis amide bond: novel disulfide-constrained bicyclic hexapeptide analogs of somatostatic. Tetrahedron. 1993;49(17):3449–3466. Available from: https://dx.doi.org/10.1016/s0040-4020(01)90206-6
  40. Venkatesan N, Kim B. Synthesis and Enzyme Inhibitory Activities of Novel Peptide Isosteres. Current Medicinal Chemistry. 2002;9(24):2243–2270. Available from: https://dx.doi.org/10.2174/0929867023368692
  41. Valverde IE, Mindt TL. 1,2,3-Triazoles as Amide-bond Surrogates in Peptidomimetics. CHIMIA. 2013;67(4):262. Available from: https://dx.doi.org/10.2533/chimia.2013.262
  42. Staśkiewicz A, Ledwoń P, Rovero P, Papini AM, Latajka R. Triazole-Modified Peptidomimetics: An Opportunity for Drug Discovery and Development. Frontiers in Chemistry. 2021;9. Available from: https://dx.doi.org/10.3389/fchem.2021.674705
  43. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discovery Today. 2005;10(21):1451–1458. Available from: https://dx.doi.org/10.1016/s1359-6446(05)03575-0
  44. Hanessian S, Auzzas L. The Practice of Ring Constraint in Peptidomimetics Using Bicyclic and Polycyclic Amino Acids. Accounts of Chemical Research. 2008;41(10):1241–1251. Available from: https://dx.doi.org/10.1021/ar8000052
  45. Vaden TD, Boer TSJAd, Simons JP, Snoek LC. Intramolecular interactions in protonated peptides: H+PheGlyGly and H+GlyGlyPhe. Physical Chemistry Chemical Physics. 2007;10(10):1443–1447. Available from: https://dx.doi.org/10.1039/b716666d
  46. Skovbakke SL, Holdfeldt A, Forsman H, Bylund J, Franzyk H. The Role of Formyl Peptide Receptors for Immunomodulatory Activities of Antimicrobial Peptides and Peptidomimetics. Current Pharmaceutical Design. 2018;24(10):1100–1120. Available from: https://dx.doi.org/10.2174/1381612824666180403123233
  47. Gokhale AS, Satyanarayanajois S. Peptides and Peptidomimetics as Immunomodulators. Immunotherapy. 2014;6(6):755–774. Available from: https://dx.doi.org/10.2217/imt.14.37
  48. Kim M, Sun ZYJ, Byron O, Campbell G, Wagner G, Wang Jh, et al. Molecular dissection of the CD2-C58 counter-receptor interface identifies CD2 Tyr86 and CD58 Lys34 residues as the functional “hot spot” 1 1Edited by I. Wilson. Journal of Molecular Biology. 2001;312(4):711–720. Available from: https://dx.doi.org/10.1006/jmbi.2001.4980
  49. Narayan P, Singh VK, Agarwal SS, Tandon R, Haq W, Raghubir R, et al. Immunomodulation by Opioid Peptidomimetic Compound. Neuroimmunomodulation. 2001;9(3):134–140. Available from: https://dx.doi.org/10.1159/000049017
  50. Gokhale A, Kanthala S, Latendresse J, Taneja V, Satyanarayanajois S. Immunosuppression by Co‐stimulatory Molecules: Inhibition of CD2‐CD48/CD58 Interaction by Peptides from CD2 to Suppress Progression of Collagen‐induced Arthritis in Mice. Chemical Biology & Drug Design. 2013;82(1):106–118. Available from: https://dx.doi.org/10.1111/cbdd.12138
  51. Liu D, DeGrado WF. De Novo Design, Synthesis, and Characterization of Antimicrobial β-Peptides. Journal of the American Chemical Society. 2001;123(31):7553–7559. Available from: https://dx.doi.org/10.1021/ja0107475
  52. Mojsoska B, Jenssen H. Peptides and Peptidomimetics for Antimicrobial Drug Design. Pharmaceuticals. 2015;8(3):366–415. Available from: https://dx.doi.org/10.3390/ph8030366
  53. Seebach D, Gardiner J. β-Peptidic Peptidomimetics. Accounts of Chemical Research. 2008;41(10):1366–1375. Available from: https://dx.doi.org/10.1021/ar700263g
  54. Moradi S, Soltani S, Ansari A, Sardari S. Peptidomimetics and their Applications in Antifungal Drug Design. Anti-Infective Agents in Medicinal Chemistry. 2009;8(4):327–344. Available from: https://dx.doi.org/10.2174/187152109789760216
  55. Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X. Antimicrobial Peptides in 2014. Pharmaceuticals. 2015;8(1):123–150. Available from: https://dx.doi.org/10.3390/ph8010123
  56. Walker D, Li Y, Roxin Á, Schaffer P, Adam MJ, Perrin DM. Facile synthesis and 18 F-radiolabeling of α 4 β 1 -specific LLP2A-aryltrifluoroborate peptidomimetic conjugates. Bioorganic & Medicinal Chemistry Letters. 2016;26(20):5126–5131. Available from: https://dx.doi.org/10.1016/j.bmcl.2016.08.011
  57. Li H, Fu S, Wang Y, Yuan X, Liu L, Dong H, et al. Antimicrobial and antitumor activity of peptidomimetics synthesized from amino acids. Bioorganic Chemistry. 2021;106:104506. Available from: https://dx.doi.org/10.1016/j.bioorg.2020.104506
  58. Das BC, Smith ME, Kalpana GV. Design, synthesis of novel peptidomimetic derivatives of 4-HPR for rhabdoid tumors. Bioorganic & Medicinal Chemistry Letters. 2008;18(14):4177–4180. Available from: https://dx.doi.org/10.1016/j.bmcl.2008.05.097
  59. Gomari MM, Abkhiz S, Pour TG, Lotfi E, Rostami N, Monfared FN, et al. Peptidomimetics in cancer targeting. Molecular Medicine. 2022;28(1). Available from: https://dx.doi.org/10.1186/s10020-022-00577-3
  60. Su L, Xu WF. Peptidomimetics and metalloprotease inhibitors as anticancer drugs. Science in China Series B: Chemistry. 2009;52(5):535–548. Available from: https://dx.doi.org/10.1007/s11426-009-0040-0
  61. Hanout W, Qvit N. Antiparasitic therapeutic peptidomimetics. (pp. 371-415) Dans: Elsevier eBooks . 2022.
  62. Kurniaty N, Maharani R, Hidayat AT, Supratman U. An Overview on Antimalarial Peptides: Natural Sources, Synthetic Methodology and Biological Properties. Molecules. 2023;28(23):7778. Available from: https://dx.doi.org/10.3390/molecules28237778
  63. Zhu S, Hudson TH, Kyle DE, Lin AJ. Synthesis and In Vitro Studies of Novel Pyrimidinyl Peptidomimetics as Potential Antimalarial Therapeutic Agents. Journal of Medicinal Chemistry. 2002;45(16):3491–3496. Available from: https://dx.doi.org/10.1021/jm020104f
  64. Helton LG, Kennedy EJ. Targeting Plasmodium with constrained peptides and peptidomimetics. IUBMB Life. 2020;72(6):1103–1114. Available from: https://dx.doi.org/10.1002/iub.2244
  65. Wu J, Sahoo JK, Li Y, Xu Q, Kaplan DL. Challenges in delivering therapeutic peptides and proteins: A silk-based solution. Journal of Controlled Release. 2022;345:176–189. Available from: https://dx.doi.org/10.1016/j.jconrel.2022.02.011
  66. Luo X, Chen H, Song Y, Qin Z, Xu L, He N, et al. Advancements, challenges and future perspectives on peptide-based drugs: Focus on antimicrobial peptides. European Journal of Pharmaceutical Sciences. 2023;181:106363. Available from: https://dx.doi.org/10.1016/j.ejps.2022.106363
  67. Rossino G, Marchese E, Galli G, Verde F, Finizio M, Serra M, et al. Peptides as Therapeutic Agents: Challenges and Opportunities in the Green Transition Era. Molecules. 2023;28(20):7165. Available from: https://dx.doi.org/10.3390/molecules28207165
  68. Nissan N, Allen MC, Sabatino D, Biggar KK. Future Perspective: Harnessing the Power of Artificial Intelligence in the Generation of New Peptide Drugs. Biomolecules. 2024;14(10):1303. Available from: https://dx.doi.org/10.3390/biom14101303
  69. Ünsal Ö, Liu J, Sicinski KM, Kumar K. Future perspectives on peptide therapeutics. (pp. 699-726) Dans: Elsevier eBooks. 2022.
  70. Sierra JM, Viñas M. Future prospects for Antimicrobial peptide development: peptidomimetics and antimicrobial combinations. Expert Opinion on Drug Discovery. 2021;16(6):601–604. Available from: https://dx.doi.org/10.1080/17460441.2021.1892072

Copyright

© 2025 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.