• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2024, Volume: 23, Issue: 2, Pages: 71-76

Original Article

In Silico Docking and Admet Prediction of a Novel Antibacterial Derivatives (Schiff Base) Targeting Dihydropteroate Synthase (1aj2)

Abstract

Schiff base-containing (imine or azomethine–C=N–) derivatives have been investigated in relation to a broad range of activity, including antibacterial activity, antiviral activity, anticancer activity, polymer technology and in many other areas due to the presence of moiety in their structures. Antibacterial activity of Schiff bases can achieve by various enzyme inhibitory mechanism. Primary target for the antibacterial drugs is inhibiting dihydropteroate synthase (DHPS) enzyme which result in inhibition of bacterial folate synthesis and act as bactericidal. In this research article Molinspiration software were used to predict pharmacokinetic properties and bioactivity score, in silico docking studies were carried out using 1-click docking software and protox3.0 software were used to toxicity prediction of 10 Schiff base compounds i.e., SB1, SB2, SB3, SB4, SB5, SB6, SB7, SB8, SB9, enzyme (1AJ2) was examined, and possible probability were recorded. and SB10 were carried out against dihydropteroate synthase enzyme (1AJ2) was examined and possible probability were recorded. The purpose of this research is to focus on investigate novel Schiff base derivative by using various computerized software’s to explore their pharmacokinetic properties, bioactivity score, toxicity and docking interaction of ligand and targeted protein.

Keywords

Schiff base, Dihydropteroate Synthase Inhibition, Molecular Docking, ADME Prediction, Antibacterial activity

References

  1. Achari A, Somers DO, Champness JN, Bryant PK, Rosemond J, Stammers DK. Crystal Structure of a Binary Complex of E. coli Dihydropteroate Synthase. 1998. Available from: https://doi.org/10.2210/pdb1AJ2/pdb
  2. Silva CMd, Silva DLd, Modolo LV, Alves RB, MAdR, Martins CVB, et al. Schiff bases: A short review of their antimicrobial activities. Journal of Advanced research. 2011;2(1):1–8. Available from: https://doi.org/10.1016/j.jare.2010.05.004
  3. Ceramella J, Iacopetta D, Catalano A, Cirillo F, Lappano R, Sinicropi MS. A review on the antimicrobial activity of Schiff bases: Data collection and recent studies. Antibiotics. 2022;11(2):1–23. Available from: https://doi.org/10.3390%2Fantibiotics11020191
  4. Mushtaq I, Ahmad M, Saleem M, Ahmed A. Pharmaceutical significance of Schiff bases: an overview. Future Journal of Pharmaceutical Sciences. 2024;10(1):1–12. Available from: https://doi.org/10.1186/s43094-024-00594-5
  5. Imran S, Taha M, Ismail NH, Khan KM, Naz F, Hussain M, et al. Synthesis of novel bisindolylmethane Schiff bases and their antibacterial activity. Molecules. 2014;19(8):11722–11740. Available from: https://doi.org/10.3390/molecules190811722
  6. Matar SA, Talib WH, Mustafa MS, Mubarak MS, Aldamen MA. Synthesis, characterization, and antimicrobial activity of Schiff bases derived from benzaldehydes and 3, 3′-diaminodipropylamine. Arabian Journal of Chemistry. 2015;8(6):850–857. Available from: https://doi.org/10.1016/j.arabjc.2012.12.039
  7. Toma A, Deyno S. Overview on mechanisms of antibacterial resistance. International Journal of Research in Pharmacy and Biosciences. 2015;2(1):27–36. Available from: https://www.researchgate.net/publication/290441250_Overview_on_Mechanisms_of_Antibacterial_Resistance
  8. Hevener KE, Yun MK, Qi J, Kerr ID, Babaoglu K, Hurdle JG, et al. Structural studies of pterin-based inhibitors of dihydropteroate synthase. Journal of medicinal chemistry. 2010;53(1):166–177. Available from: https://pubs.acs.org/doi/10.1021/jm900861d
  9. Ommenya FK, Nyawade EA, Andala DM, Kinyua J. Synthesis, characterization and antibacterial activity of Schiff base. Journal of Chemistry. 2020;p. 1–8. Available from: https://doi.org/10.1155/2020/1745236
  10. Chang Y, Hawkins BA, Du JJ, Groundwater PW, Hibbs DE, Lai F. 2023. A guide to in silico drug design. Pharmaceutics. 2023;15(1):1–52. Available from: https://doi.org/10.3390/pharmaceutics15010049
  11. Raczuk E, Dmochowska B, Samaszko-Fiertek J, Madaj J. Different Schiff bases-structure, importance and classification. Molecules. 2022;27(3):1–24. Available from: https://doi.org/10.3390%2Fmolecules27030787
  12. Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports. 2023;13(1):1–18. Available from: https://doi.org/10.1038/s41598-023-40160-2
  13. Cheng F, Li W, Liu G, Tang Y. In Silico ADMET Prediction: Recent Advances, Current Challenges and Future Trends. Current Topics in Medicinal Chemistry. 2013;13(11):1273–1289. Available from: http://dx.doi.org/10.2174/15680266113139990033
  14. Kuchana M, Kambala LB. Design, synthesis and in silico prediction of drug-likeness properties of new ortho, meta and para. Journal of Applied Pharmaceutical Science. 2021;11(8):31–35. Available from: https://dx.doi.org/10.7324/JAPS.2021.110805
  15. Pullagura P, Vallabhaneni MR, Addanki HR, Chennamsetty S, Yenisetty R. A simple, efficient synthesis and molecular docking studies of 2-styrylchromones. Organic Communications. 2021;14(2):121–132. Available from: https://www.acgpubs.org/doc/20210622173440A2-103-OC-2102-1959.pdf
  16. Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies. 2004;1(4):337–341. Available from: https://doi.org/10.1016/j.ddtec.2004.11.007
  17. Husain A, Ahmad A, Khan SA, Asif M, Bhutani R, Al-Abbasi FA. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi Pharmaceutical Journal. 2016;24(1):104–114. Available from: https://dx.doi.org/10.1016/j.jsps.2015.02.008
  18. Raies AB, Bajic VB. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2016;6(2):147–172. Available from: https://doi.org/10.1002/wcms.1240

Copyright

© 2024 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.