• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2020, Volume: 19, Issue: 1, Pages: 14-19

Original Article

Synthesis And Anti-Inflammatory Activity of Benzimidazole Coumarins

Abstract

Objective: Benzimidazoles and coumarins are heterocyclic compounds known for their diverse biological and pharmacological properties, such as antibacterial, antifungal, anti-inflammatory, and cytotoxic effects. Derivatives of benzimidazole coumarins have demonstrated promise as antiviral, antineoplastic, and antifilarial agents. This research focuses on the synthesis of benzimidazole coumarin derivatives and evaluates their potential for anti-inflammatory activity. Methodology: Coumarin-3-carboxylic acid was synthesized via the Perkin rearrangement of salicylaldehyde and diethylmalonate. This intermediate was then reacted with 4-chloro ortho-phenylenediamine, triethylamine, and ethyl chloroformate to form an amide linkage, resulting in a yellow solid. Subsequent cyclization with polyphosphoric acid produced the benzimidazole-3-coumarin nucleus as a dark yellow solid. Finally, Ullmann coupling with various aryl amines, using L-proline and copper iodide as catalysts, yielded the desired derivatives. These compounds were characterized by melting point analysis, TLC, IR spectroscopy, and NMR spectroscopy. The synthesized derivatives were also evaluated for anti-inflammatory activity using the carrageenan-induced paw edema model in rats. Findings: Compound P-1 exhibited significant dose-dependent activity (p<0.001) at both 100 mg/kg and 200 mg/kg doses, while compound P-2 demonstrated moderate activity. The IR spectra revealed absorption peaks at 3379.89 cm⁻¹ (indicative of N-H groups) and 1335.24 cm⁻¹ (C-N stretching), confirming the presence of the benzimidazole nucleus. The ¹H NMR spectrum further supported these findings with chemical shifts consistent with the benzimidazole structure. Absorption peaks at 1685.45 cm⁻¹ and 1089.81 cm⁻¹ confirmed the presence of the pyrone nucleus, while the multiple peaks between δ 6.7 and 8.5 ppm indicated the formation of benzopyrone. Novelty: Benzimidazole-coumarin hybrids hold promise as new anti-inflammatory agents and warrant further investigation for potential clinical applications.

Keywords: Benzimidazole, Coumarin, Anti­Inflammatory activity, Antibacterial, Anti­ Filarial agents

References

  1. Yadav S, Narasimhan B, Kaur H. Perspectives of Benzimidazole Derivatives as Anticancer Agents in the New Era. Anti-Cancer Agents in Medicinal Chemistry. 2016;16:1403–1428. Available from: https://pubmed.ncbi.nlm.nih.gov/26526461/
  2. Moharana AK, Dash RN, Mahanandia NC, Subudhi BB. Synthesis and anti-inflammatory activity evaluation of some benzimidazole derivatives. Pharmaceutical Chemistry Journal. 2022;56(8):1070–1074. Available from: https://pubmed.ncbi.nlm.nih.gov/36405379/
  3. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN. Natural and synthetic coumarin derivatives with anti-inflammatory/ antioxidant activities. Current pharmaceutical design. 2004;10:3813–3833. Available from: https://pubmed.ncbi.nlm.nih.gov/15579073/
  4. Rosskopf F, Kraus J, Franz G. Imunological and antitumor effects of coumarin and some derivatives. Die Pharmazie - An International Journal of Pharmaceutical Sciences. 1992;47:139–142. Available from: https://europepmc.org/article/med/1635924
  5. Hwu JR, Singha R, Hong SC, Chang YH, Das AR, Vliegen I, et al. Synthesis of new benzimidazole-coumarin conjugates as anti-hepatitis C virus agents. International Society for Antiviral Research. 2008;77:157–162. Available from: https://doi.org/10.1016/j.antiviral.2007.09.003
  6. Arora RK, Kaur N, Bansal Y, Bansal G. Novel coumarin-benzimidazole derivatives as antioxidants and safer anti-inflammatory agents. Acta Pharmaceutica Sinica B. 2014;4(5):368–375. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4629095/pdf/main.pdf
  7. Rodríguez SA, Nazareno MA, Baumgartner MT. Effect of different C3-aryl substituents on the antioxidant activity of 4-hydroxycoumarin derivatives. Bioorganic & Medicinal Chemistry Letters. 2011;19:6233–6238. Available from: https://doi.org/10.1016/j.bmc.2011.09.012
  8. Stefani HA, Ueogjan KG, Manarin F, Farsky SH, Zukerman-Schpector J, Caracelli I, et al. Synthesis, biological evaluation and molecular docking studies of 3-(triazolyl)-coumarin derivatives: effect on inducible nitric oxide synthase. European journal of medicinal chemistry. 2012;58:117–127. Available from: https://pubmed.ncbi.nlm.nih.gov/23123728/
  9. Heravi MM, Sadjadi S, Oskooie HA, Shoar RH, Bamoharram FF. The synthesis of coumarin-3-carboxylic acids and 3-acetyl-coumarin derivatives using heteropolyacids as heterogeneous and recyclable catalysts. Catalysis Communications. 2008;9(3):470–474. Available from: https://doi.org/10.1016/j.catcom.2007.07.005
  10. Luan XH, Cerqueira NMFSA, Oliveira AM, Raposo MMM, Rodrigues LM, Coelho PJ, et al. Synthesis of fluorescent 3-benzoxazol-2-yl-coumarins. Advances in Colour Science and Technology. 2002;5. Available from: https://repositorium.sdum.uminho.pt/bitstream/1822/1018/1/luan%20et%20al.pdf
  11. Ma D, Cai Q, Zhang H. Mild method for Ullmann coupling reaction of amines and aryl halides. Organic letters. 2003;5(14):2453–2455. Available from: https://pubs.acs.org/doi/10.1021/ol0346584
  12. Brain F, Anthony J, Hanna F. Vogel’s Textbook Practical Organic Chemistry. In: Determination of physical constants; Determination of melting points.. (pp. 236-238) Longman Singapore Publishers. 1989.
  13. Silverstein RM, Webster FX, Kiemle DJ, Bryce DL. Spectrometric Identification of Organic Compounds. In: Infrared spectrometry. Wiley. 1974.
  14. Kemp W. Infrared spectroscopy. In: Organic Spectroscopy (3). (pp. 19-99) 1991.
  15. Silverstein RM, Bassler CG, Morril TC. Ultraviolet spectrometry. In: Spectrometric Identification of Organic Compound. (pp. 289-300) New York. John Wiley & Sons. 1991.
  16. Sharma BK. Spectroscopy. Krishna Prakashan. 1981.
  17. Kemp W. Organic spectroscopy. In: Mass Spectroscopy. (pp. 56-86) New York. Macmillan Publishing Co. 1991.
  18. Vinegar R, Schreiber W, Hugo R. Biphasic development of carrageenin edema in rats. Journal of pharmacology and experimental therapeutics. 1969;166(1):96–103. Available from: https://jpet.aspetjournals.org/content/166/1/96.long

Copyright

© 2020 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.