• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2024, Volume: 23, Issue: 2, Pages: 111-118

Original Article

Antibacterial Activity of Lactuca virosa with an In silico Approach

Abstract

The current work aims to screen the phytoconstitutes of the Lactuca virosa leaves ethanolic extract by using GC-MS analysis and investigate its antibacterial activity. GC-MS analysis was conducted to identify the various phytochemical constituents within the ethanolic extracts of Lactuca virosa. Subsequently, protein-ligand docking was performed using proteins PDBID: 6AHT and 5C5H, revealing a strong affinity between the bioactive compounds and the proteins, indicating potent inhibitory action. Furthermore, each concentration of Lactuca virosa was assessed for antibacterial activity using Minimum Inhibitory Concentration (MIC) against bacterial strains including Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Streptococcus mutans. Preliminary phytochemical testing revealed the presence of alkaloids, coumarins, flavonoids, glycosides, phenols, terpenoids, oils, and resins. GC-MS showed the presence of many bioactive compounds in extract. Docking results highlighted that two compounds exhibited the most favourable binding energies of approximately -8.1 kcal/mol and -8.5 kcal/mol with 6AHT, and -8.8 kcal/mol with 5C5H. The ethanolic extract of 0.4mg concentration has shown good antibacterial activity against gram positive bacteria. The study identifies a new source of antibacterial compounds, which could lead to the development of new drugs, particularly effective against gram positive strains like Bacillus cereus and Streptococcus mutans.

Keywords: Lactuca virosa, GC-MS, Docking, ADMET, Antibacterial Activity

References

  1. Fikri AA, Arifin S. Global antimicrobial resistance and use surveillance system. World Health Organization. Available from: https://www.who.int/initiatives/glass
  2. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet: Infectious Diseases. 2018;18(3):318–327. Available from: https://doi.org/10.1016/S1473-3099(17)30753-3
  3. Capelo-Martínez JL, Igrejas G., eds. Antibiotic Drug Resistance. (pp. 1-720) John Wiley & Sons. 2019.
  4. Zargari A. Medicinal plants. Tehran University Publications. 1978;3:223–228.
  5. Abdul-Jalil TZ. Lactuca serriola: Short review of its phytochemical and pharmacological profiles. International Journal of Drug Delivery Technology. 2020;10(3):505–508. Available from: http://dx.doi.org/10.25258/ijddt.10.3.34
  6. Uwaya DO, Bello AK, Aikpitanyi I. Evaluation of Antitussive, Expectorant and Analgesic Activities of Aqueous Extracts of Di-herbal Formulation of Whole Plant of Euphobia hirta and Lactuca virosa Leaf on Rodents. Journal of Applied Sciences and Environmental Management. 2023;27(8):1881–1888. Available from: https://doi.org/10.4314/jasem.v27i8.35
  7. Uwaya DO, Okakwu R, Omozuwa OP. In-Vivo and In-Vitro Anti-Inflammatory Activities of the Aqueous Extract of Di-Herbal Formulation [Euphorbia Hirta and Lactuca Virosa. Journal of Applied Sciences and Environmental Management. 2020;24(11):1979–1985. Available from: https://dx.doi.org/10.4314/jasem.v24i11.19
  8. Häkkinen ST, Cankar K, Nohynek L, Arkel JV, Laurel M, Oksman-Caldentey KM, et al. Cichorium intybus L. Hairy Roots as a Platform for Antimicrobial Activity. Pharmaceuticals. 2023;16(2):1–11. Available from: https://doi.org/10.3390/ph16020140
  9. Das P, Nayak A, Preethi K, Nikhil K, Kiruba AA. Antibacterial activity and molecular docking study of Coptis teeta. Herba Polonica. 2023;69(2):1–8. Available from: https://herbapolonica.pl/resources/html/article/details?id=610101&language=en
  10. Sam S. Importance and effectiveness of herbal medicines. Journal of pharmacognosy and phytochemistry. 2019;8(2):354–357. Available from: https://www.phytojournal.com/archives/2019/vol8issue2/PartF/8-4-205-517.pdf
  11. Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics. 2018;14:1–31. Available from: https://doi.org/10.1007/s11306-018-1449-2
  12. Vakayil R, Anbazhagan M, Shanmugam G, Ramasamy S, Mathanmohun M. Molecular docking and in vitro analysis of phytoextracts from B. serrata for antibacterial activities. Bioinformation. 2021;17(7):667–672. Available from: https://doi.org/10.6026%2F97320630017667
  13. Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. Progress in Medicinal Chemistry. 2021;60:273–343. Available from: https://doi.org/10.1016/bs.pmch.2021.01.004
  14. Zeleke D, Eswaramoorthy R, Belay Z, Melaku Y. Synthesis and Antibacterial, Antioxidant, and Molecular Docking Analysis of Some Novel Quinoline Derivatives. Journal of Chemistry. 2020;2020:1–16. Available from: https://dx.doi.org/10.1155/2020/1324096
  15. Riyadi PH, Sari ID, Kurniasih RA, Agustini TW, Swastawati F, Herawati VE, et al. SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in Spirulina platensis. In: 2nd International Conference on Fisheries and Marine , IOP Conference Series: Earth and Environmental Science. (Vol. 890, pp. 1-12) IOP Publishing. 2021.
  16. Nabi M, Zargar MI, Tabassum N, Ganai BA, Wani SUD, Alshehri S, et al. Phytochemical Profiling and Antibacterial Activity of Methanol Leaf Extract of Skimmia anquetilia. Plants. 2022;11(13):1–10. Available from: https://dx.doi.org/10.3390/plants11131667
  17. Li Z, Wan J, Zhang Y, Dang C, Pan F, Fu J. Influences of petroleum hydrocarbon pyrene on the formation, stability and antibacterial activity of natural Au nanoparticles. Science of The Total Environment. 2021;795. Available from: https://doi.org/10.1016/j.scitotenv.2021.148813
  18. Anilan A, Silpa IS, Sona CA, Gopika KS, Haneefa MF, Jayakumar A. GC-MS analysis of ethanolic inflorescence extract. World Journal of Pharmaceutical Research. 2022;11(6):882–888. Available from: https://wjpr.s3.ap-south-1.amazonaws.com/article_issue/5d3d34d79363696dd6a81454fd7d0170.pdf
  19. Premakumari JV, Gopinath MJ, Narmadha B. Comparative Analysis of Latex Plants by GC-MS using Methanol Extraction. Mass Spectrometry Letters. 2023;14(1):9–23. Available from: https://doi.org/10.5478/MSL.2023.14.1.9
  20. Bhardwaj K, Sharma R, Cruz-Martins N, Valko M, Upadhyay NK, Kuča K, et al. Studies of Phytochemicals, Antioxidant, and Antibacterial Activities of Pinus gerardiana and Pinus roxburghii Seed Extracts. BioMed Research International. 2022;2022:1–10. Available from: https://dx.doi.org/10.1155/2022/5938610
  21. Ramírez-Gómez XS, Jiménez-García SN, Campos VB, Campos MLG. Plant Metabolites in Plant Defense Against Pathogens. In: Topolovec-Pintarić S., ed. Plant Diseases - Current Threats and Management Trends. (Vol. 15, pp. 49-68) IntechOpen. 2019.
  22. Forconesi GV, Banfi L, Basso A, Lambruschini C, Moni L, Riva R. Synthesis of Polyoxygenated Heterocycles by Diastereoselective Functionalization of a Bio-Based Chiral Aldehyde Exploiting the Passerini Reaction. Molecules . 2020;25(14):1–22. Available from: https://doi.org/10.3390/molecules25143227
  23. Kaul TN, Jr. MDEM, Ogra PL. Antiviral effects of flavonoids on human viruses. Journal of Medical Virology. 1985;15(1):71–79. Available from: https://doi.org/10.1002/jmv.1890150110
  24. Valgas C, Souza SMD, Smânia EFA, Jr. AS. Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology. 2007;38(2):369–380. Available from: https://doi.org/10.1590/S1517-83822007000200034

Copyright

© 2024 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.