Notice: Undefined offset: 1 in /var/www/jopcr.com/article-detail-page.php on line 103
Antioxidant Status in Congenital Heart Disease Children with Heart Failure
 
  • P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2025, Volume: 24, Issue: 3, Pages: 161–165

Original Article

Antioxidant Status in Congenital Heart Disease Children with Heart Failure

Abstract

Heart failure is major contributor to morbidity and mortality in children with congenital heart disease (CHD). Recently heart failure’s progression is often associated with oxidative stress. Superoxide dismutase (SOD) is first line antioxidant of defense against superoxide anion. Catalase (CAT) breaks down hydrogen peroxide into water and oxygen molecules which complements previous detoxification carried out by SOD. The objective of the study is to compare the differences of SOD and CAT levels in acyanotic CHD patients between those with and without heart failure. A case-control study was conducted on three to ten years old children with a left-to-right shunt acyanotic CHD with and without heart failure in the Pediatric Cardiology outpatient clinic, ward, and emergency room of Dr. Soetomo Hospital Surabaya from March-June 2023. Echocardiography was used to establish the CHD, while Pediatric Heart Failure Score (PHFS) criteria was used to asses heart failure. T-test was undertaken for analyzing the difference between both groups. The total samples were 41 children, consisted of 29 subjects in the case group (CHD with heart failure) and 12 subjects in the control group (without heart failure). The level of SOD in CHD with heart failure was lower (74.670+15.705) than those without it (109.163+3.111) (p<0.05). In contrast, CAT level in CHD with heart failure was higher (25.895) than those without it (13.976) (p<0.05). There was a significant difference of SOD and CAT levels in acyanotic CHD between those with and without heart failure.

Keywords: Acyanotic CHD, Antioxidant, CAT, Children, Heart failure, Oxidative stress, SOD

References

  1. Hinton RB, Ware SM. Heart Failure in Pediatric Patients With Congenital Heart Disease. Circulation Research. 2017;120(6):978–994. Available from: https://dx.doi.org/10.1161/circresaha.116.308996
  2. Nora ME, Murni IK, Nugroho S, Noormanto N. Predictors of heart failure in children with congenital heart disease. Paediatrica Indonesiana. 2022;62(6):390–395. Available from: https://dx.doi.org/10.14238/pi62.6.2022.390-5
  3. Lipshultz SE, Sleeper LA, Towbin JA, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. New England Journal of Medicine. 2003;348(17):1647–1655. Available from: https://doi.org/10.1056/nejmoa021715
  4. Rossano JW, Kim JJ, Decker JA, Price JF, Zafar F, Graves DE, et al. Prevalence, Morbidity, and Mortality of Heart Failure–Related Hospitalizations in Children in the United States: A Population-Based Study. Journal of Cardiac Failure. 2012;18(6):459–470. Available from: https://dx.doi.org/10.1016/j.cardfail.2012.03.001
  5. Kantor PF, Lougheed J, Dancea A, McGillion M, Barbosa N, Chan C, et al. Presentation, Diagnosis, and Medical Management of Heart Failure in Children: Canadian Cardiovascular Society Guidelines. Canadian Journal of Cardiology. 2013;29(12):1535–1552. Available from: https://dx.doi.org/10.1016/j.cjca.2013.08.008
  6. Nandi D, Rossano JW. Epidemiology and cost of heart failure in children. Cardiology in the Young. 2015;25(8):1460–1468. Available from: https://dx.doi.org/10.1017/s1047951115002280
  7. Park MK. Park's Pediatric Cardiology for Practitioners (7). Texas. Elsevier. 2021.
  8. Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ, Clunie S, et al. Incidence, Causes, and Outcomes of Dilated Cardiomyopathy in Children. JAMA. 2006;296(15):1867–1876. Available from: https://dx.doi.org/10.1001/jama.296.15.1867
  9. Sharma S, Grobe AC, Wiseman DA, Kumar S, Englaish M, Najwer I, et al. Lung antioxidant enzymes are regulated by development and increased pulmonary blood flow. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2007;293(4):L960–L971. Available from: https://dx.doi.org/10.1152/ajplung.00449.2006
  10. Fukai T, Ushio-Fukai M. Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxidants & Redox Signaling. 2011;15(6):1–24. Available from: https://dx.doi.org/10.1089/ars.2011.3999
  11. Mendez JI, Nicholson WJ, Taylor WR. SOD Isoforms and Signalling in Blood Vessels: Evidence for the Importance of ROS Compartmentalization. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25(5):887–888. Available from: https://doi.org/10.1161/01.atv.0000164043.24549.50
  12. Gao-Zhong LE, Dong XY, Yang S, Chen YQ, Lu JP. Erythrocyte Oxidative Stress in Children with Left to Right Shunt Congenital Heart Disease. Chinese journal of contemporary pediatrics. 2010;12(6):440–443. Available from: https://pubmed.ncbi.nlm.nih.gov/20540852/
  13. Tsutsui H, Kinugawa S, Matsushima S. Oxidative Stress and Heart Failure. American Journal of Physiology-Heart and Circulatory Physiology. 2011;301(6):H2181–H2190. Available from: https://doi.org/10.1152/ajpheart.00554.2011
  14. CD. Oxidative Stress and Heart Failure. Archives of the Balkan Medical Union. 2019;54(2):219–221. Available from: https://dx.doi.org/10.31688/abmu.2019.54.2.219

Copyright

© 2025 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.