• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research


Journal of Pharmaceutical Research

Year: 2022, Volume: 21, Issue: 1, Pages: 1-5

Review Article

Application of Glucomannan


Glucomannan (GM) a water-soluble polysaccharide possesses mannose residues which are extracted from tubers, bulbs, softwoods and roots of many plants. Glucomannan is considered to be a dietary fibre which is actually present in some plant species in the form of hemicelluloses component in the cell wall. Its structure consists of linear chain of mixed residues of α-1,4 linked D-mannose and D-glucose monomers arranged in blocks. The molecular weight of native GM lies between 1×104– 2×106. Low molecular weight GM could be obtained by de-polymerization technique. The average molecular weight of Konjac Glucomannan (KGM) is 500,000 – 2,000,000 and varies with species, growing area, storage time and processing methods. The glucomannan from different sources vary in its mannose to glucose ratio. Konjac tuber glucomannan has a molar ratio of 1.6:1 or 1.4:1 (ratio differs with konjac breeds), Orchid tubers and Scotch pine have molar ratios of 3.6:1 and 2.1:1 respectively. Diversity of glucomannan also depends on degree of acetylation in GM chain. Values of degree of acetylation are 5to10% or every 19th sugar residue (attached randomly at C-6 position in KGM), is actually responsible to facilitate dispersion and solubility by inhibiting the intra-molecular hydrogen bonds. This solubility function is attractive for multiple pharmaceutical applications. However increase in acetylation degree in GM slows the gelation process. The intrinsic viscosity of KGM solution is highest among the polysaccharides that facilitate swelling behaviour and hence gel formation that finds application in food industry. Gels have good stability, films, hydrogel, beads, micro and nanoparticles of Glucomannan may have potential usage in therapeutic drug delivery systems without causing toxicity. It may also be useful in treatment of chronic constipation, decreasing serum cholesterol, and increasing insulin sensitivity. As a food supplement it could play a significant role in weight loss. Carboxymethylated glucomannan improves the properties of paper, such as burst index, dry tensile index, and wet tensile index. These diverse applications make Glucomannan a most sought after biomolecule.


Keywords: Biomolecule, Glucomannan, Diverse application


  1. Bouveng HO, Iwasaki T, Lindberg B, Meier H, Munch-Petersen J. Studies on Glucomannans from Norway Spruce. 4. Enzymic Hydrolysis. Acta Chemica Scandinavica. 1963;17(6):1796–1797. Available from: https://dx.doi.org/10.3891/acta.chem.scand.17-1796
  2. Timell TE. Wood Hemicelluloses: Part I. Advances in Carbohydrate Chemistry. 1964;19:247–302.
  3. Franz G. Biosynthesis of salep mannan. Phytochemistry. 1973;12(10):2369–2373.
  4. Kenne L, Rosell KG, Svensson S. Studies on the distribution of the O-acetyl groups in pine glucomannan. Carbohydrate Research. 1975;44(1):69–76. Available from: https://dx.doi.org/10.1016/s0008-6215(00)84336-0
  5. Ishrud O, Zahid M, Ahmad VU, Pan Y. Isolation and Structure Analysis of a Glucomannan from the Seeds of Libyan Dates. Journal of Agricultural and Food Chemistry. 2001;49(8):3772–3774. Available from: https://dx.doi.org/10.1021/jf0103976
  6. Rhodes DI, Stone BA. Proteins in Walls of Wheat Aleurone Cells. Journal of Cereal Science. 2002;36(1):83–101. Available from: https://dx.doi.org/10.1006/jcrs.2001.0450
  7. Schröder R, Atkinson RG, Redgwell RJ. Re-interpreting the role of endo-β-mannanases as mannan endotransglycosylase/hydrolases in the plant cell wall. Annals of Botany. 2009;104(2):197–204. Available from: https://dx.doi.org/10.1093/aob/mcp120
  8. Al-Ghazzewi FH, Khanna S, Tester RF, Piggott J. The potential use of hydrolysed konjac glucomannan as a prebiotic. Journal of the Science of Food and Agriculture. 2007;87(9):1758–1766. Available from: https://dx.doi.org/10.1002/jsfa.2919
  9. Chua M, Baldwin TC, Hocking TJ, Chan K. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br. Journal of Ethnopharmacology. 2010;128(2):268–278. Available from: https://dx.doi.org/10.1016/j.jep.2010.01.021
  10. Maeda M, Shimahara H, Sugiyama N. Detailed Examination of the Branched Structure of Konjac Glucomannan. Agricultural and Biological Chemistry. 1980;44(2):245–252.
  11. Buchala AJ, Franz G, Meier H. A glucomannan from the tubers of Orchis morio. Phytochemistry. 1974;13(1):163–166. Available from: https://dx.doi.org/10.1016/s0031-9422(00)91286-x
  12. Dey PM, Dixon RA. Biochemistry of storage carbohydrates in green plants. Academic press. 1985.
  13. Maekaji K. Determination of Acidic Component of Konjac Mannan. Agricultural and Biological Chemistry. 1978;42(1):177–178.
  14. Gao S, Nishinari K. Effect of deacetylation rate on gelation kinetics of konjac glucomannan. Colloids and Surfaces B: Biointerfaces. 2004;38(3-4):241–249. Available from: https://dx.doi.org/10.1016/j.colsurfb.2004.02.026
  15. Huang L, Takahashi R, Kobayashi S, Kawase T, Nishinari K. Gelation Behavior of Native and Acetylated Konjac Glucomannan. Biomacromolecules. 2002;3(6):1296–1303. Available from: https://dx.doi.org/10.1021/bm0255995
  16. Zhang C, Chen Jd, Yang Fq. Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydrate Polymers. 2014;104:175–181. Available from: https://dx.doi.org/10.1016/j.carbpol.2013.12.081
  17. Ratcliffe I, Williams PA, Viebke C, Meadows J. Physicochemical Characterization of Konjac Glucomannan. Biomacromolecules. 2005;6(4):1977–1986. Available from: https://dx.doi.org/10.1021/bm0492226
  18. Millane RP, Hendrixson TL. Crystal structures of mannan and glucomannans. Carbohydrate Polymers. 1994;25:245–251. Available from: https://dx.doi.org/10.1016/0144-8617(94)90050-7
  19. Kishida N, Okimasu S, Kamata T. Molecular Weight and Intrinsic Viscosity of Konjac Gluco-mannan. Agricultural and Biological Chemistry. 1978;42(9):1645–1650.
  20. Dave V, Mccarthy SP. Review of konjac glucomannan. Journal of Environmental Polymer Degradation. 1997;5(4):237.
  21. Zhang Yq, Xie Bj, Gan X. Advance in the applications of konjac glucomannan and its derivatives. Carbohydrate Polymers. 2005;60(1):27–31. doi: 10.1016/j.carbpol.2004.11.003
  22. Marzio L, Bianco RD, Pieramico O, Cuccurullo F. Mouth-to-cecum transit time in patients affected by chronic constipation: effect of glucomannan. American Journal of Gastroenterology. 1989;84(8):888–891.
  23. Passaretti S, Franzoni M, Comin U, Donzelli R, Rocca F, Colombo E, et al. Action of glucomannans on complaints in patients affected with chronic constipation: a multicentric clinical evaluation. The Italian journal of gastroenterology. 1991;23:421–426.
  24. Walsh DE, Yaghoubian V, Behforooz A. Effect of glucomannan on obese patients: a clinical study. Int J Obes. 1984;8(4):289–293.
  25. Arvill A, Bodin L. Effect of short-term ingestion of konjac glucomannan on serum cholesterol in healthy men. The American Journal of Clinical Nutrition. 1995;61(3):585–589. Available from: https://dx.doi.org/10.1093/ajcn/61.3.585
  26. Martino F, Martino E, Morrone F, Carnevali E, Forcone R, Niglio T. Effect of dietary supplementation with glucomannan on plasma total cholesterol and low density lipoprotein cholesterol in hypercholesterolemic children. Nutrition, Metabolism and Cardiovascular Diseases. 2005;15(3):174–180. Available from: https://dx.doi.org/10.1016/j.numecd.2004.04.004
  27. Gallaher DD, Gallaher CM, Mahrt GJ, Carr TP, Hollingshead CH, Hesslink R, et al. A Glucomannan and Chitosan Fiber Supplement Decreases Plasma Cholesterol and Increases Cholesterol Excretion in Overweight Normocholesterolemic Humans. Journal of the American College of Nutrition. 2002;21(5):428–433. Available from: https://dx.doi.org/10.1080/07315724.2002.10719246
  28. Chen HL, Sheu WHH, Tai TS, Liaw YP, Chen YC. Konjac Supplement Alleviated Hypercholesterolemia and Hyperglycemia in Type 2 Diabetic Subjects—A Randomized Double-Blind Trial. Journal of the American College of Nutrition. 2003;22(1):36–42. doi: 10.1080/07315724.2003.10719273
  29. Vuksan V, Jenkins DJ, Spadafora P, Sievenpiper JL, Owen R, Vidgen E, et al. Konjac-mannan (glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes. A randomized controlled metabolic trial. Diabetes Care. 1999;22(6):913–919. doi: 10.2337/diacare.22.6.913
  30. Salas-Salvadó J, Farrés X, Luque X, Narejos S, Borrell M, Basora J, et al. Effect of two doses of a mixture of soluble fibres on body weight and metabolic variables in overweight or obese patients: a randomised trial. British Journal of Nutrition. 2008;99(6):1380–1387. Available from: https://dx.doi.org/10.1017/s0007114507868528
  31. Keithley JK, Swanson B, Mikolaitis SL, DeMeo M, Zeller JM, Fogg L, et al. Safety and Efficacy of Glucomannan for Weight Loss in Overweight and Moderately Obese Adults. Journal of Obesity. 2013;2013:1–7. Available from: https://dx.doi.org/10.1155/2013/610908
  32. Onakpoya I, Posadzki P, Ernst E. The Efficacy of Glucomannan Supplementation in Overweight and Obesity: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Journal of the American College of Nutrition. 2014;33(1):70–78. Available from: https://dx.doi.org/10.1080/07315724.2014.870013
  33. Alonso-Sande M, Teijeiro-Osorio D, Remuñán-López C, Alonso MJ. Glucomannan, a promising polysaccharide for biopharmaceutical purposes. European Journal of Pharmaceutics and Biopharmaceutics. 2009;72(2):453–462. Available from: https://dx.doi.org/10.1016/j.ejpb.2008.02.005
  34. Chen HL, Cheng HC, Liu YJ, Liu SY, Wu WT. Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults. Nutrition. 2006;22(11-12):1112–1119. Available from: https://dx.doi.org/10.1016/j.nut.2006.08.009
  35. Connolly ML, Lovegrove JA, Tuohy KM. Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. Journal of Functional Foods. 2010;2(3):219–224. Available from: https://dx.doi.org/10.1016/j.jff.2010.05.001
  36. Pokusaeva K, Fitzgerald GF, Sinderen Dv. Carbohydrate metabolism in Bifidobacteria. Genes & Nutrition. 2011;6(3):285–306. Available from: https://dx.doi.org/10.1007/s12263-010-0206-6
  37. Katrolia P, Zhou P, Zhang P, Yan Q, Li Y, Jiang Z, et al. High level expression of a novel β-mannanase from Chaetomium sp. exhibiting efficient mannan hydrolysis. Carbohydrate Polymers. 2012;87(1):480–490. Available from: https://dx.doi.org/10.1016/j.carbpol.2011.08.008
  38. Al-Ghazzewi FH, Tester RF. Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria. Journal of the Science of Food and Agriculture. 2012;92(11):2394–2396. Available from: https://dx.doi.org/10.1002/jsfa.5678
  39. Al-Ghazzewi FH, Tester RF. Effect of konjac glucomannan hydrolysates and probiotics on the growth of the skin bacteriumPropionibacterium acnes in vitro. International Journal of Cosmetic Science. 2010;32(2):139–142. Available from: https://dx.doi.org/10.1111/j.1468-2494.2009.00555.x
  40. Wang M, He W, Wang S, Song X. Carboxymethylated glucomannan as paper strengthening agent. Carbohydrate Polymers. 2015;125:334–339. Available from: https://dx.doi.org/10.1016/j.carbpol.2015.02.060
  41. Xiao M, Dai S, Wang L, Ni X, Yan W, Fang Y, et al. Carboxymethyl modification of konjac glucomannan affects water binding properties. Carbohydrate Polymers. 2015;130:1–8. Available from: https://dx.doi.org/10.1016/j.carbpol.2015.05.001


© 2022 Published by Krupanidhi Educational Trust. This is an open-access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/)


Subscribe now for latest articles and news.