• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2022, Volume: 21, Issue: 3, Pages: 55-69

Review Article

ULK1/2 Inhibitor: Essential Component of Autophagic Cell Death Machinery

Abstract

The effectiveness of selective drug therapy for cancer patients has gained much attention from academics and society. However, the rapid development of the drug resistance gained is becoming a significant challenge. As an essential catabolic and homeostatic process, autophagy plays a vigorous role in the degradation or recycling of proteins and cellular components, by which eukaryotic cells recycle or degrade their internal constituents through the machinery of membrane trafficking. Therefore, under traumatic conditions autophagy provides the cells with a safe supply of biomolecules and energy to maintain homeostasis. Deregulation of autophagy pays to tumor genesis, tumor-stromal interactions, and resistance to cancer therapies. Outcome of these interactions between plants and viruses, autophagy performs a vital role in regulating immune-related cell death, antiviral defense, and viral pathogenesis. This study explores the role of autophagy in drug resistance by identifying the mechanism by which autophagy is elaborate in drug resistance, focusing on its mode of action and validation as a potential therapy.

Keywords: Autophagy mechanism; Cancer; ULK1/2 inhibitors

References

  1. Novikoff AB, Shin WY. Endoplasmic reticulum and autophagy in rat hepatocytes. Proceedings of the National Academy of Sciences. 1978;75(10):5039–5042. Available from: https://www.pnas.org/doi/pdf/10.1073/pnas.75.10.5039
  2. Wollert T. Autophagy. Current Biolology. 2019;29(14):671–678. Available from: https://doi.org/10.1016/j.cub.2019.06.014
  3. Nakatogawa H, Ohsumi Y. Molecular mechanisms of autophagy in yeast. Tanpakushitsu Kakusan Koso. 2008;53(16):2099–2105.
  4. Towers CG, Thorburn A. Autophagy in Cancer. Reference Module in Biomedical Sciences. Encyclopedia of Cancer (Third Edition). 2019;p. 112–121. Available from: http://dx.doi.org/10.1016/B978-0-12-801238-3.65812-9
  5. Levine B, Kroemer G. Autophagy in the Pathogenesis of Disease. Cell. 2008;132(1):27–42. Available from: https://doi.org/10.1016/j.cell.2007.12.018
  6. Wen X, Klionsky DJ. At a glance: A history of autophagy and cancer. Seminars in Cancer Biology. 2020;66:3–11. Available from: https://doi.org/10.1016/j.semcancer.2019.11.005
  7. Huang F, Wang BRR, Wang YGR. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World Journal of Gastroenterology. 2018;24(41):4643–4651. Available from: https://doi.org/10.3748/wjg.v24.i41.4643
  8. Onodera J, Ohsumi Y. Autophagy Is Required for Maintenance of Amino Acid Levels and Protein Synthesis under Nitrogen Starvation. Journal of Biological Chemistry. 2005;280(36):31582–31586. Available from: https://doi.org/10.1074/jbc.m506736200
  9. Filigheddu N, Gnocchi VF, Coscia M, Cappelli M, Porporato PE, Santiago TR, et al. Ghrelin and Des-Acyl Ghrelin Promote Differentiation and Fusion of C2C12 Skeletal Muscle Cells. Mol Biol Cell. 2007;18(3):986–994. Available from: https://doi.org/10.1091/mbc.e06-05-0402
  10. Kim J, Kundu M, Viollet B, Guan KLL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology. 2011;13(2):132–141. Available from: https://doi.org/10.1038/ncb2152
  11. Nakamura S, Yoshimori T. New insights into autophagosome–lysosome fusion. Journal of Cell Science. 2017;130(7):1209–1225. Available from: https://doi.org/10.1242/jcs.196352
  12. Kriegenburg F, Ungermann C, Reggiori F. Coordination of Autophagosome–Lysosome Fusion by Atg8 Family Members. Current Biology. 2018;28(8):R512–R518. Available from: https://doi.org/10.1016/j.cub.2018.02.034
  13. Jaber N, Dou Z, Chen JSS, Catanzaro J, Jiang YPP, Ballou LM, et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proceedings of the National Academy of Sciences. 2012;109(6):2003–2008. Available from: https://doi.org/10.1073/pnas.1112848109
  14. Piacentini M, Kroemer G. Dying to survive - apoptosis, necroptosis, autophagy as supreme experiments of nature. The International Journal of Developmental Biology. 2015;59(1-3):5–9. Available from: https://doi.org/10.1387/ijdb.150167mp
  15. Ren JHH, He WSS, Nong L, Zhu QYY, Hu K, Zhang RGG, et al. Acquired Cisplatin Resistance in Human Lung Adenocarcinoma Cells Is Associated with Enhanced Autophagy. Cancer Biotherapy and Radiopharmaceuticals. 2010;25(1):75–80. Available from: https://doi.org/10.1089/cbr.2009.0701
  16. Zappavigna S, Luce A, Vitale G, Merola N, Facchini S, Caraglia M. Autophagic cell death: A new frontier in cancer research. Advances in Bioscience and Biotechnology. 2013;04(02):250–262. Available from: http://dx.doi.org/10.4236/abb.2013.42034
  17. Kroemer G, Mariño G, Levine B. Autophagy and the Integrated Stress Response. Molecular Cell. 2010;40(2):280–293. Available from: https://doi.org/10.1016/j.molcel.2010.09.023
  18. Kocaturk NM, Akkoc Y, Kig C, Bayraktar O, Gozuacik D, Kutlu O. Autophagy as a molecular target for cancer treatment. European Journal of Pharmaceutical Sciences. 2019;134:116–137. Available from: https://doi.org/10.1016/j.ejps.2019.04.011
  19. Cao Y, Luo Y, Zou J, Ouyang J, Cai Z, Zeng X, et al. Autophagy and its role in gastric cancer. Clinica Chimica Acta. 2019;489:10–20. Available from: https://doi.org/10.1016/j.cca.2018.11.028
  20. Chen Y, Klionsky DJ. The regulation of autophagy – unanswered questions. Journal of Cell Science. 2011;124(2):161–170. Available from: https://doi.org/10.1242/jcs.064576
  21. Feng Y, Backues SK, Baba M, Heo JMM, Harper JW, Klionsky DJ. Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate of autophagosome formation. Autophagy. 2016;12(4):648–658. Available from: http://dx.doi.org/10.1080/15548627.2016.1157237
  22. Papinski D, Kraft C. Atg1 kinase organizes autophagosome formation by phosphorylating Atg9. Autophagy. 2014;10(7):1338–1340. Available from: https://doi.org/10.4161%2Fauto.28971
  23. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy. Cell. 2005;122(6):927–939. Available from: https://doi.org/10.1016/j.cell.2005.07.002
  24. Mercer TJ, Gubas A, Tooze SA. A molecular perspective of mammalian autophagosome biogenesis. Journal of Biological Chemistry. 2018;293(15):5386–5395. Available from: https://doi.org/10.1074/jbc.r117.810366
  25. Park JMM, Jung CH, Seo M, Otto NM, Grunwald D, Kim KH, et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy. 2016;12(3):547–564. Available from: http://dx.doi.org/10.1080/15548627.2016.1140293
  26. Tsuboyama K, Koyama-Honda I, Sakamaki Y, Koike M, Morishita H, Mizushima N. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science. 2016;354(6315):1036–1041. Available from: https://doi.org/10.1126/science.aaf6136
  27. Klionsky DJ, Schulman BA. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nature Structural & Molecular Biology. 2014;21(4):336–345. Available from: https://doi.org/10.1038%2Fnsmb.2787
  28. Limpert AS, Lambert LJ, Bakas NA, Bata N, Brun SN, Shaw RJ, et al. Autophagy in Cancer: Regulation by Small Molecules. Trends in Pharmacological Sciences. 2018;39(12):1021–1032. Available from: https://doi.org/10.1016/j.tips.2018.10.004
  29. Colasanti T, Vomero M, Barbati C, Finucci A, Conti F, Alessandri C, et al. Autophagy and Autoimmunity. Mosaic of Autoimmunity. 2019;p. 143–153. Available from: https://doi.org/10.1016/B978-0-12-814307-0.00016-5
  30. Kriegenburg F, Ungermann C, Reggiori F. Coordination of Autophagosome–Lysosome Fusion by Atg8 Family Members. Current Biology. 2018;28(8):R512–R518. Available from: https://doi.org/10.1016/j.cub.2018.02.034
  31. Jäger S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P. Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci. 2004;117(20):4837–4885. Available from: https://doi.org/10.1242/jcs.01370
  32. Panda PK, Mukhopadhyay S, Das DN, Sinha N, Naik PP, Bhutia SK. Mechanism of autophagic regulation in carcinogenesis and cancer therapeutics. Seminars in Cell & Developmental Biology. 2015;39:43–55. Available from: http://dx.doi.org/10.1016/j.semcdb.2015.02.013
  33. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402(6762):672–678. Available from: https://doi.org/10.1038/45257
  34. Wen L, Chen XZZ, Yang K, Chen ZXZ, Zhang B, Chen JPZ, et al. Prognostic Value of Cancer Stem Cell Marker CD133 Expression in Gastric Cancer: A Systematic Review. PLoS ONE. 2013;8(3):e59154. Available from: https://doi.org/10.1371%2Fjournal.pone.0059154
  35. Galluzzi L, Pietrocola F, Pedro JMB, Amaravadi RK, Baehrecke EH, Cecconi F, et al. Autophagy in malignant transformation and cancer progression. The EMBO Journal. 2015;34(7):856–880. Available from: https://doi.org/10.15252/embj.201490784
  36. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004;304(5656):1500–1502. Available from: https://doi.org/10.1126/science.1096645
  37. Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X. ULK1·ATG13·FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy. Journal of Biological Chemistry. 2009;284(18):12297–12305. Available from: https://doi.org/10.1074/jbc.m900573200
  38. Yamada Y, Suzuki NN, Hanada T, Ichimura Y, Kumeta H, Fujioka Y, et al. The Crystal Structure of Atg3, an Autophagy-related Ubiquitin Carrier Protein (E2) Enzyme that Mediates Atg8 Lipidation. Journal of Biological Chemistry. 2007;282(11):8036–8043. Available from: https://doi.org/10.1074/jbc.m611473200
  39. Jiang H, Cheng D, Liu W, Peng J, Feng J. Protein kinase C inhibits autophagy and phosphorylates LC3. Biochemical and Biophysical Research Communications. 2010;395(4):471–476. Available from: http://dx.doi.org/10.1016/j.bbrc.2010.04.030
  40. Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, et al. p62 Is a Key Regulator of Nutrient Sensing in the mTORC1 Pathway. Molecular Cell. 2011;44(1):134–146. Available from: http://dx.doi.org/10.1016/j.molcel.2011.06.038
  41. Moscat J, Diaz-Meco MT. p62 at the Crossroads of Autophagy, Apoptosis, and Cancer. p62 at the Crossroads of Autophagy. 2009;137(6):1001–1004. Available from: https://doi.org/10.1016%2Fj.cell.2009.05.023
  42. Chandrasekar T, Evans CP. Autophagy and urothelial carcinoma of the bladder: A review. Investigative and Clinical Urology. 2016;57(Suppl 1):S89–S97. Available from: https://doi.org/10.4111%2Ficu.2016.57.S1.S89
  43. Egan D, Kim J, Shaw RJ, Guan K. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy. 2011;7(6):643–644. Available from: https://doi.org/10.4161/auto.7.6.15123
  44. Young ARJ, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JFJ, et al. Autophagy mediates the mitotic senescence transition. Genes & Development. 2009;23(7):798–803. Available from: https://doi.org/10.1101%2Fgad.519709
  45. Mokas S, Mills JR, Garreau C, Fournier MJ, Robert F, Arya P, et al. Uncoupling Stress Granule Assembly and Translation Initiation Inhibition. Molecular Biology of the Cell. 2009;20(11):2673–2683. Available from: https://doi.org/10.1091/mbc.e08-10-1061
  46. Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L, Fassy F, et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nature Chemical Biology. 2014;10(12):1013–1019. Available from: https://doi.org/10.1038/nchembio.1681
  47. Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nature Cell Biology. 2014;16(11):1069–1079. Available from: https://doi.org/10.1038/ncb3053
  48. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, et al. Autophagy-deficient mice develop multiple liver tumors. Genes & Development. 2011;25(8):795–800. Available from: https://doi.org/10.1101/gad.2016211
  49. Mariño G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, López-Otín C. Withdrawal: Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. Journal of Biological Chemistry. 2019;294(4):1435. Available from: https://doi.org/10.1074/jbc.w118.007329
  50. Kashuba VI, Gizatullin RZ, Protopopov AI, Allikmets R, Korolev S, Li J, et al. NotI linking/jumping clones of human chromosome 3: mapping of the TFRC, RAB7 and HAUSP genes to regions rearranged in leukemia and deleted in solid tumors. FEBS Letters. 1997;419(2-3):181–185. Available from: https://doi.org/10.1016/s0014-5793(97)01449-x
  51. Xu P, Das M, Reilly J, Davis RJ. JNK regulates FoxO-dependent autophagy in neurons. Genes & Development. 2011;25(4):310–322. Available from: https://doi.org/10.1101/gad.1984311
  52. Pike LRG, Singleton DC, Buffa F, Abramczyk O, Phadwal K, Li JLL, et al. Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival. Biochemical Journal. 2013;449(2):389–400. Available from: https://doi.org/10.1042/bj20120972
  53. Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quondamatteo F, Gherardini PF, et al. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nature Cell Biology. 2015;17(1):20–30. Available from: https://doi.org/10.1038/ncb3072
  54. Chano T, Ikegawa S, Saito-Ohara F, Inazawa J, Mabuchi A, Saeki Y, et al. Isolation, characterization and mapping of the mouse and human RB1CC1 genes. Gene. 2002;291(1-2):29–34. Available from: https://doi.org/10.1016/s0378-1119(02)00585-1
  55. Liang C, Lee JSS, Inn KSS, Gack MU, Li Q, Roberts EA, et al. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nature Cell Biology. 2008;10(7):776–787. Available from: https://doi.org/10.1038/ncb1740
  56. Ahn CH, Jeong EG, Lee JW, Kim MS, Kim SH, Kim SS, et al. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. APMIS. 2007;115(12):1344–1349. Available from: https://doi.org/10.1111/j.1600-0463.2007.00858.x
  57. Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. Journal of Pathology. 2008;214(2):231–241. Available from: https://doi.org/10.1002/path.2276
  58. Kundu M, Lindsten T, Yang CYY, Wu J, Zhao F, Zhang J, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 2008;112(4):1493–1502. Available from: https://doi.org/10.1182/blood-2008-02-137398
  59. Chan EYW, Longatti A, Mcknight NC, Tooze SA. Kinase-Inactivated ULK Proteins Inhibit Autophagy via Their Conserved C-Terminal Domains Using an Atg13-Independent Mechanism. Molecular and Cellular Biology. 2009;29(1):157–171. Available from: https://doi.org/10.1128/mcb.01082-08
  60. Chan EY, Tooze SA. Evolution of Atg1 function and regulation. Autophagy. 2009;5(6):758–765. Available from: https://doi.org/10.4161/auto.8709
  61. Alers S, Löffler AS, Wesselborg S, Stork B. The incredible ULKs. Cell Communication and Signaling. 2012;10(1):7. Available from: https://doi.org/10.1186/1478-811x-10-7
  62. Löffler AS, Alers S, Dieterle AM, Keppeler H, Franz-Wachtel M, Kundu M. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy. 2011;7(7):696–706. Available from: https://doi.org/10.4161/auto.7.7.15451
  63. Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death & Differentiation. 2011;18(4):571–580. Available from: http://dx.doi.org/10.1038/cdd.2010.191
  64. Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Current Opinion in Cell Biology. 2010;22(2):132–139. Available from: http://dx.doi.org/10.1016/j.ceb.2009.12.004
  65. Wong PM, Puente C, Ganley IG, Jiang X. The ULK1 complex sensing nutrient signals for autophagy activation. Autophagy. 2013;9(2):124–137. Available from: https://doi.org/10.4161/auto.23323
  66. Chan EYW, Kir S, Tooze SA. siRNA Screening of the Kinome Identifies ULK1 as a Multidomain Modulator of Autophagy. Journal of Biological Chemistry. 2007;282(35):25464–25474. Available from: https://doi.org/10.1074/jbc.m703663200
  67. Wyant GA, Abu-Remaileh M, Wolfson RL, Chen WW, Freinkman E, Danai LV, et al. mTORC1 Activator SLC38A9 Is Required to Efflux Essential Amino Acids from Lysosomes and Use Protein as a Nutrient. Cell. 2017;171(3):642–654. Available from: https://doi.org/10.1016/j.cell.2017.09.046
  68. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, et al. Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy. Cell. 2009;136(3):521–534. Available from: http://dx.doi.org/10.1016/j.cell.2008.11.044
  69. Zhang N, Yang X, Yuan F, Zhang L, Wang Y, Wang L, et al. Increased Amino Acid Uptake Supports Autophagy-Deficient Cell Survival upon Glutamine Deprivation. Cell Reports. 2018;23(10):3006–3020. Available from: https://doi.org/10.1016/j.celrep.2018.05.006
  70. Huang J, Manning BD. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochemical Society Transactions. 2009;37(1):217–222. Available from: https://doi.org/10.1042/bst0370217
  71. Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb Binds and Regulates the mTOR Kinase. Current Biology. 2005;15(8):702–713. Available from: https://doi.org/10.1016/j.cub.2005.02.053
  72. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature Cell Biology. 2003;5(6):578–581. Available from: https://doi.org/10.1038/ncb999
  73. Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology. 2007;8(10):774–785. Available from: https://doi.org/10.1038/nrm2249
  74. Meley D, Bauvy C, Houben-Weerts JHPM, Dubbelhuis PF, Helmond MTJ, Codogno P, et al. AMP-activated Protein Kinase and the Regulation of Autophagic Proteolysis. Journal of Biological Chemistry. 2006;281(46):34870–34879. Available from: https://doi.org/10.1074/jbc.m605488200
  75. Sodowski K, Cnota W, Czuba B, Borowski D, Wielgos M, Kaminski P. Blood flow in ductus venosus in early uncomplicated pregnancy. Neuroendocrinol Lett. 2007;28(5):713–719.
  76. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint. Molecular Cell. 2008;30(2):214–226. Available from: https://doi.org/10.1016/j.molcel.2008.03.003
  77. Bach M, Larance M, James DE, Ramm G. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochemical Journal. 2011;440(2):283–291. Available from: https://doi.org/10.1042/bj20101894
  78. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science. 2011;331(6016):456–461. Available from: https://doi.org/10.1126/science.1196371
  79. Lee JW, Park S, Takahashi Y, Wang HGG. The Association of AMPK with ULK1 Regulates Autophagy. PLoS ONE. 2010;5(11):e15394. Available from: https://doi.org/10.1371%2Fjournal.pone.0015394
  80. Levine B, Abrams J. p53: The Janus of autophagy? Nature Cell Biology. 2008;10(6):637–639. Available from: https://doi.org/10.1038%2Fncb0608-637
  81. Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proceedings of the National Academy of Sciences. 2005;102(23):8204–8209. Available from: https://doi.org/10.1073/pnas.0502857102
  82. Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PLL, et al. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle. 2009;8(10):1571–1576. Available from: https://doi.org/10.4161/cc.8.10.8498
  83. Crighton D, Wilkinson S, O'prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-Induced Modulator of Autophagy, Is Critical for Apoptosis. Cell. 2006;126(1):121–134. Available from: https://doi.org/10.1016/j.cell.2006.05.034
  84. Gao W, Shen Z, Shang L, Wang X. Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death & Differentiation. 2011;18(10):1598–1607. Available from: http://dx.doi.org/10.1038/cdd.2011.33
  85. Tasdemir E, Maiuri MC, Morselli E, Criollo A, D'amelio M, Djavaheri-Mergny M, et al. A dual role of p53 in the control of autophagy. Autophagy. 2008;4(6):810–814. Available from: https://doi.org/10.4161/auto.6486
  86. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nature Cell Biology. 2008;10(6):676–687. Available from: https://doi.org/10.1038/ncb1730
  87. Laplante M, Sabatini DM. mTOR Signaling in Growth Control and Disease. Cell. 2012;149(2):274–293. Available from: http://dx.doi.org/10.1016/j.cell.2012.03.017
  88. Petherick KJ, Conway OJL, Mpamhanga C, Osborne SA, Kamal A, Saxty B, et al. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. Journal of Biological Chemistry. 2015;290(48):11376–11383. Available from: https://doi.org/10.1074/jbc.c114.627778
  89. Puente C, Hendrickson RC, Jiang X. Nutrient-regulated Phosphorylation of ATG13 Inhibits Starvation-induced Autophagy. Journal of Biological Chemistry. 2016;291(11):6026–6035. Available from: https://doi.org/10.1074%2Fjbc.M115.689646
  90. Lazarus MB, Novotny CJ, Shokat KM. Structure of the Human Autophagy Initiating Kinase ULK1 in Complex with Potent Inhibitors. ACS Chemical Biology. 2015;10(1):257–261. Available from: https://doi.org/10.1021/cb500835z
  91. Mack HID, Zheng B, Asara JM, Thomas SM. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy. 2012;8(8):1197–1214. Available from: https://doi.org/10.4161/auto.20586
  92. Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proceedings of the National Academy of Sciences. 2011;108(12):4788–4793. Available from: https://doi.org/10.1073/pnas.1100844108
  93. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. Autophagy Suppresses Tumorigenesis through Elimination of p62. Cell. 2009;137(6):1062–1075. Available from: http://dx.doi.org/10.1016/j.cell.2009.03.048
  94. Qiu DMM, Wang GLL, Chen L, Xu YYY, He S, Cao XLL, et al. The expression of beclin-1, an autophagic gene, in hepatocellular carcinoma associated with clinical pathological and prognostic significance. BMC Cancer. 2014;14(1):1–13. Available from: https://doi.org/10.1186/1471-2407-14-327
  95. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A. Journal of Clinical Investigation. 2003;112(12):1809–1829. Available from: https://doi.org/10.1172/jci20039
  96. Tang D, Kang R, Livesey KM, Cheh CWW, Farkas A, Loughran P, et al. Endogenous HMGB1 regulates autophagy. The Journal of Cell Biology. 2010;190(5):881–892. Available from: https://doi.org/10.1083%2Fjcb.200911078
  97. Aryal P, Kim K, Park PHH, Ham S, Cho J, Song K. Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells. FEBS Journal. 2014;281(20):4644–4658. Available from: https://doi.org/10.1111/febs.12969
  98. Egan DF, Chun MGH, Vamos M, Zou H, Rong J, Miller CJ, et al. Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates. Molecular Cell. 2015;59(2):285–297. Available from: http://dx.doi.org/10.1016/j.molcel.2015.05.031
  99. Lazarus MB, Shokat KM. Discovery and structure of a new inhibitor scaffold of the autophagy initiating kinase ULK1. Bioorganic & Medicinal Chemistry. 2015;23(17):5483–5488. Available from: http://dx.doi.org/10.1016/j.bmc.2015.07.034
  100. Wood SD, Grant W, Adrados I, Choi JY, Alburger JM, Duckett DR. In Silico HTS and Structure Based Optimization of Indazole-Derived ULK1 Inhibitors. ACS Med Chem Lett.. 2017;8:1258–1263. Available from: https://pubs.acs.org/doi/10.1021/acsmedchemlett.7b00344
  101. Das CK, Banerjee I, Mandal M. Pro-survival autophagy: An emerging candidate of tumor progression through maintaining hallmarks of cancer. Seminars in Cancer Biology. 2020;66:59–74. Available from: https://doi.org/10.1016/j.semcancer.2019.08.020
  102. Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer. Genes & Development. 2016;30(17):1913–1930. Available from: https://doi.org/10.1101/gad.287524.116
  103. Newton PT. New insights into niclosamide action: autophagy activation in colorectal cancer. Biochemical Journal. 2019;476(5):779–781. Available from: https://doi.org/10.1042/bcj20190020
  104. Hellmann MD, Paz-Ares L, Caro RB, Zurawski B, Kim SW, Costa EC, et al. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2019;381(21):2020–2031. Available from: https://doi.org/10.1056/nejmoa1910231
  105. Hou J, Rao M, Zheng W, Fan J, Law BYK. Advances on Cell Autophagy and Its Potential Regulatory Factors in Renal Ischemia-Reperfusion Injury. DNA and Cell Biology. 2019;38(9):895–904. Available from: https://doi.org/10.1089/dna.2019.4767
  106. Colecchia D, Dapporto F, Tronnolone S, Salvini L, Chiariello M. MAPK15 is part of the ULK complex and controls its activity to regulate early phases of the autophagic process. Journal of Biological Chemistry. 2018;293(41):15962–15976. Available from: https://doi.org/10.1074/jbc.ra118.002527
  107. Huang YHH, Yang PMM, Chuah QYY, Lee YJJ, Hsieh YFF, Peng CWW, et al. Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells. Autophagy. 2014;10(7):1212–1228. Available from: https://doi.org/10.4161%2Fauto.28772
  108. Coppé J, Desprez P, Krtolica A, Campisi J. The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annual Review of Pathology. 2010;5:99–118. Available from: https://doi.org/10.1146%2Fannurev-pathol-121808-102144
  109. Amaral C, Borges M, Melo S, Silva ETD, Correia-Da-Silva G, Teixeira N. Apoptosis and Autophagy in Breast Cancer Cells following Exemestane Treatment. PLoS ONE. 2012;7(8):e42398. Available from: https://doi.org/10.1371/journal.pone.0042398
  110. Dragowska WH, Weppler SA, Wang JC, Wong LY, Kapanen AI, Rawji JS, et al. Induction of Autophagy Is an Early Response to Gefitinib and a Potential Therapeutic Target in Breast Cancer. PLoS ONE. 2013;8(10):e76503. Available from: https://doi.org/10.1371/journal.pone.0076503
  111. Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA. Autophagy Facilitates the Development of Breast Cancer Resistance to the Anti-HER2 Monoclonal Antibody Trastuzumab. PLoS ONE. 2009;4(7):e6251. Available from: https://doi.org/10.1371/journal.pone.0006251
  112. Cufí S, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Cuyàs E, López-Bonet E. The anti-malarial chloroquine overcomes Primary resistance and restores sensitivity to Trastuzumab in HER2-positive breast cancer. Sci Rep. 2013;3:1–13. Available from: https://doi.org/10.1038/srep02469
  113. Shen M, Duan WMM, Wu MYY, Wang WJJ, Liu LU, Xu MDD, et al. Participation of autophagy in the cytotoxicity against breast cancer cells by cisplatin. Oncology Reports. 2015;34(1):359–367. Available from: https://doi.org/10.3892/or.2015.4005
  114. Abedin MJ, Wang D, Mcdonnell MA, Lehmann U, Kelekar A. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death & Differentiation. 2007;14(3):500–510. Available from: https://doi.org/10.1038/sj.cdd.4402039
  115. Lefort S, Joffre C, Kieffer Y, Givel AMM, Bourachot B, Zago G, et al. Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-negative breast cancers. Autophagy. 2014;10(12):2122–2142. Available from: https://doi.org/10.4161%2F15548627.2014.981788
  116. Wang C, Huo X, Wang L, Meng Q, Liu Z, Liu Q, et al. Dioscin strengthens the efficiency of adriamycin in MCF-7 and MCF-7/ADR cells through autophagy induction: More than just down-regulation of MDR1. Scientific Reports. 2016;6(1):1–12. Available from: https://doi.org/10.1038/srep28403
  117. Lee YJ, Won AJ, Lee JJ, Jung JH, Yoon S, Lee BM, et al. Molecular Mechanism of SAHA on Regulation of Autophagic Cell Death in Tamoxifen-Resistant MCF-7 Breast Cancer Cells. International Journal of Medical Sciences. 2012;9(10):881–893. Available from: https://doi.org/10.7150/ijms.5011
  118. Felzen V, Hiebel C, Koziollek-Drechsler I, Reißig S, Wolfrum U, Kögel D, et al. Estrogen receptor α regulates non-canonical autophagy that provides stress resistance to neuroblastoma and breast cancer cells and involves BAG3 function. Cell Death & Disease. 2015;6(7):e1812. Available from: https://doi.org/10.1038/cddis.2015.181
  119. Cook KL, Clarke PAG, Parmar J, Hu R, Schwartz‐roberts JL, Abu‐asab M, et al. Knockdown of estrogen receptor‐α induces autophagy and inhibits antiestrogen‐mediated unfolded protein response activation, promoting ROS‐induced breast cancer cell death. The FASEB Journal. 2014;28(9):3891–3905. Available from: https://doi.org/10.1096/fj.13-247353
  120. Vijayaraghavan S, Karakas C, Doostan I, Chen X, Bui T, Yi M, et al. CDK4/6 and autophagy inhibitors synergistically induce senescence in Rb positive cytoplasmic cyclin E negative cancers. Nature Communications. 2017;8(1):1–17. Available from: https://doi.org/10.1038/ncomms15916
  121. Qadir MA, Kwok B, Dragowska WH, To KH, Le D, Bally MB, et al. Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Research and Treatment. 2008;112(3):389–403. Available from: https://doi.org/10.1007/s10549-007-9873-4
  122. Medina PD, Payré B, Boubekeur N, Bertrand-Michel J, Tercé F, Silvente-Poirot S, et al. Ligands of the antiestrogen-binding site induce active cell death and autophagy in human breast cancer cells through the modulation of cholesterol metabolism. Cell Death & Differentiation. 2009;16(10):1372–1384. Available from: https://doi.org/10.1038/cdd.2009.62
  123. Amaral C, Varela C, Azevedo M, Silva ETD, Roleira FMF, Chen S, et al. Effects of steroidal aromatase inhibitors on sensitive and resistant breast cancer cells: Aromatase inhibition and autophagy. The Journal of Steroid Biochemistry and Molecular Biology. 2013;135(1):51–59. Available from: http://dx.doi.org/10.1016/j.jsbmb.2012.12.017
  124. Ravanan P, Srikumar IF, Talwar P. Autophagy: The spotlight for cellular stress responses. Life Sciences. 2017;188:53–67. Available from: http://dx.doi.org/10.1016/j.lfs.2017.08.029
  125. Picca A, Lezza A, Leeuwenburgh C, Pesce V, Calvani R, Landi F, et al. Fueling Inflamm-Aging through Mitochondrial Dysfunction: Mechanisms and Molecular Targets. International Journal of Molecular Sciences. 2017;18(5):933. Available from: https://doi.org/10.3390/ijms18050933
  126. Chen P, Cescon M, Bonaldo P. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy. 2014;10(2):192–200. Available from: https://doi.org/10.4161/auto.26927
  127. Antunes F, Erustes AG, Costa AJ, Nascimento AC, Bincoletto C, Ureshino RP, et al. Autophagy and intermittent fasting: the connection for cancer therapy? Clinics. 2018;73(16):e814s. Available from: https://doi.org/10.6061%2Fclinics%2F2018%2Fe814s
  128. Niekerk GV, Hattingh SM, Engelbrecht AMM. Enhanced Therapeutic Efficacy in Cancer Patients by Short-term Fasting: The Autophagy Connection. Frontiers in Oncology. 2016;6:1–7. Available from: https://doi.org/10.3389/fonc.2016.00242
  129. Tang F, Hu P, Yang Z, Xue C, Gong J, Sun S, et al. SBI0206965, a novel inhibitor of Ulk1, suppresses non-small cell lung cancer cell growth by modulating both autophagy and apoptosis pathways. Oncology Reports. 2017;37(6):3449–3458. Available from: https://doi.org/10.3892/or.2017.5635

Copyright

© 2022 Published by Krupanidhi Educational Trust. This is an open-access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/)

DON'T MISS OUT!

Subscribe now for latest articles and news.