• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Cellulosic Porous Materials for Pharmaceutical Applications
  • VIEWS 1163
  • PDF 370

Journal of Pharmaceutical Research

Year: 2017, Volume: 16, Issue: 4, Pages: 319-326

Original Article

Cellulosic Porous Materials for Pharmaceutical Applications

Abstract

In recent year�s cellulosic porous materials are widely used in drug delivery. It consists of numerous micro-fibrils containing crystalline and amorphous regions, which represents high tensile strength and provide flexibility. Striking advantages like the cost effective, low density, highly porous, high drug loading, safety, good potential for chemical modification and biocompatibility, made it an interesting polymer for applications in the field of biotechnology and nanomedicine in future. This review summarise the sources, isolation, properties, chemistry, characteristics, methods for size reduction and applications of cellulosic porous materials for pharmaceutical applications. Cellulose fibers have huge potential as a carrier for drug delivery in terms of patentability, scalability, and industrial application because of several characteristics properties and currently most of the researchers only focus on application in the field of material science and electronics. Outcomes of this review help to understand the concept of porous material used in drug delivery, explore natural cellulose fibers as a promising carrier and also needful for the researcher working in the field of pharmaceutical sciences.�

References

  • Saba, N., Tahir, P. M. & Jawaid, M. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6, 2247-2273 (2014).
  • Redgwell, R. J. & Fischer, M. Dietary fiber as a versatile food component: an industrial perspective. Molecular nutrition & food research 49, 521-535 (2005).
  • Kolakovic, R., Peltonen, L., Laukkanen, A., Hirvonen, J. & Laaksonen, T. Nanofibrillar cellulose films for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 82, 308-315 (2012).
  • Lucia, L. A. & Rojas, O. J. Fiber nanotechnology: a new platform for ďż˝greenďż˝ research and technological innovations. Cellulose 14, 539-542 (2007).
  • Bledzki, A. & Gassan, J. Composites reinforced with cellulose based fibres. Progress in polymer science 24, 221-274 (1999).
  • Desai, N. S., Bramhane, D. M. & Nagarsenker, M. S. Repaglinide-Cyclodextrin complexes: Preparation, Characterization and in vivo evaluation of antihyperglycemic activity. Journal of Inclusion Phenomena and Macrocyclic Chemistry 70, 217-225 (2011).
  • Baptist, K. J. A Review on Pulp Manufacture from Non Wood Plant Materials. International Journal of Chemical Engineering and Applications 4, 144 (2013).
  • Lin, S.-P. et al. Biosynthesis, production and applications of bacterial cellulose. Cellulose 20, 2191-2219 (2013).
  • Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition 44, 3358-3393 (2005).
  • Le Floch, A., Jourdes, M. & Teissedre, P.-L. Polysaccharides and lignin from oak wood used in cooperage: Composition, interest, assays: A review. Carbohydrate research 417, 94-102 (2015).
  • Brown Jr, R. M. The biosynthesis of cellulose. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 33, 1345-1373 (1996).
  • Sharma, S. Green barrier materials from cellulose nano fibers. (2015).
  • Li, Y. Processing of Hemp Fibre Using Enzyme/ Fungal Treatment for Composites. (2009).
  • Gardner, D. J., Han, Y., Kiziltas, A. & Peng, Y. Progress on cellulose nanofiber-filled thermoplastic composites. Advanced Structures & Composites Center (AEWC) Oct 14 (2010).
  • Wojnďż˝rovits, L., Fďż˝ldvďż˝ry, C. M. & Takďż˝cs, E. Radiationinduced grafting of cellulose for adsorption of hazardous water pollutants: A review. Radiation Physics and Chemistry 79, 848-862 (2010).
  • Mochochoko, T., Oluwafemi, O., Adeyemi, O. O., Jumbam, D. N. & Songca, S. P. Natural cellulose fibers: sources, isolation, properties and applications. Micro-and Nanostructured Polymer Systems: From Synthesis to Applications, 25 (2016).
  • Liebau, F. Ordered microporous and mesoporous materials with inorganic hosts: definitions of terms, formula notation, and systematic classification. Microporous and Mesoporous materials 58, 15-72 (2003).
  • Lu, G. Nanoporous materialsďż˝anoverview. Nanoporous materials: science and engineering 4, 1 (2004).
  • Crini, G. & Badot, P.-M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Progress in polymer science 33, 399-447 (2008).
  • Perro, A., Reculusa, S., Ravaine, S., Bourgeat-Lami, E. & Duguet, E. Design and synthesis of Janus microand nanoparticles. Journal of materials chemistry 15, 3745-3760 (2005).
  • Wang, N., Ding, E. & Cheng, R. Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24, 5-8 (2008).
  • Beck-Candanedo, S., Roman, M. & Gray, D. G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6, 1048-1054 (2005).
  • Marchessault, R., Morehead, F. & Walter, N. Liquid crystal systems from fibrillar polysaccharides. (1959).
  • Favier, V. et al. Nanocomposite materials from latex and cellulose whiskers. Polymers for Advanced Technologies 6, 351-355 (1995).
  • Hosseinidoust, Z., Alam, M. N., Sim, G., Tufenkji, N. & van de Ven, T. G. Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale 7, 16647-16657 (2015).
  • Bai, W., Holbery, J. & Li, K. A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16, 455-465 (2009).
  • Lee, K.-Y. et al. Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18, 595-605 (2011).
  • Kimura, S. et al. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. The Plant Cell 11, 2075-2085 (1999).
  • Hossain, K. M. Z. et al. Effect of cellulose nanowhiskers on surface morphology, mechanical properties, and cell adhesion of melt-drawn polylactic acid fibers. Biomacromolecules 15, 1498-1506 (2014).
  • Habibi, Y., Lucia, L. A. & Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews 110, 3479-3500 (2010).
  • Chen, W. et al. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18, 433-442 (2011).
  • Li, J. et al. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydrate polymers 90, 16091613 (2012).
  • Ankerfors, M. Microfibrillated cellulose: Energyefficient preparation techniques and key properties. (2012).
  • Liu, L.-L., Tian, Y.-B., Tang, C.-C., Zhong, C. & Liu, X. Preparation of Nanocrystalline Cellulose from Soybean Dregs by Acid Hydrolysis Followed by High-Pressure Homogenization. Food Science 22, 001 (2011).
  • Stelte, W. & Sanadi, A. R. Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Industrial & engineering chemistry research 48, 11211-11219 (2009).
  • Zheng, H. Production of fibrillated cellulose materials-Effects of pretreatments and refining strategy on pulp properties. (2014).
  • He, W., Jiang, X., Sun, F. & Xu, X. Extraction and Characterization of Cellulose Nanofibers from Phyllostachys nidularia Munro via a Combination of Acid Treatment and Ultrasonication. BioResources 9, 6876-6887 (2014).
  • Kalia, S., Boufi, S., Celli, A. & Kango, S. Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science 292, 5-31 (2014).
  • Chatap, V. & Patil, S. D. Dissolution Rate Enhancement of Repaglinide Using Dietary Fiber as a Promising Carrier. Current drug delivery (2016).
  • Ilevbare, G. A., Liu, H., Edgar, K. J. & Taylor, L. S. Impact of polymers on crystal growth rate of structurally diverse compounds from aqueous solution. Molecular pharmaceutics 10, 2381-2393 (2013).
  • Chang, C.-W. & Wang, M.-J. Preparation of microfibrillated cellulose composites for sustained release of h2o2 or o2 for biomedical applications. ACS Sustainable Chemistry & Engineering 1, 1129-1134 (2013).
  • Pinto, R. J., Neto, C. P., Neves, M. C. & Trindade, T. Composites of cellulose and metal nanoparticles. (INTECH Open Access Publisher, 2012).
  • Bruce, D., Hobson, R., Farrent, J. & Hepworth, D. High-performance composites from low-cost plant primary cell walls. Composites Part A: Applied Science and Manufacturing 36, 1486-1493 (2005).
  • Petersen, N. & Gatenholm, P. Bacterial cellulosebased materials and medical devices: current state and perspectives. Applied microbiology and biotechnology 91, 1277-1286 (2011).
  • Bodin, A., Concaro, S., Brittberg, M. & Gatenholm, P. Bacterial cellulose as a potential meniscus implant. Journal of tissue engineering and regenerative medicine 1, 406-408 (2007).
  • Puskas, J. E. & Chen, Y. Biomedical application of commercial polymers and novel polyisobutylenebased thermoplastic elastomers for soft tissue replacement. Biomacromolecules 5, 1141-1154 (2004).
  • Dugan, J. M., Gough, J. E. & Eichhorn, S. J. Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8, 287-298 (2013).
  • Stein, A., Melde, B. J. & Schroden, R. C. Hybrid inorganicďż˝organic mesoporous silicatesďż˝ nanoscopic reactors coming of age. Advanced Materials 12, 1403-1419 (2000).

DON'T MISS OUT!

Subscribe now for latest articles and news.