• P-ISSN 0973-7200 E-ISSN 2454-8405
  • Follow us

Journal of Pharmaceutical Research

Article

Journal of Pharmaceutical Research

Year: 2019, Volume: 18, Issue: 2, Pages: 9-16

Original Article

Design and Evaluation of Injectable Suspension Containing Anti-inflammatory Glucocorticoids

Abstract

Objective: The aim of the present work was to formulate an intramuscular injection of Betamethasone acetate and Betamethasone sodium phosphate. Betamethasone acetate, an insoluble substance, was formulated as a depot suspension for parenteral use, whereas betamethasone sodium phosphate was used for immediate action, with excipients such as buffering agents, surfactants, complexing agents, and preservatives. Methods: The formulation involved batch optimisation of preservatives, surfactants, and homogenisation with consistent API quantities. The final formulation contained 3 mg each of Betamethasone acetate, betamethasone sodium phosphate, 3.4 mg monobasic sodium phosphate, 7.1 mg dibasic sodium phosphate, 0.01 ml polysorbate 80, 0.1 mg disodium edetate, and 0.2 mg benzalkonium chloride per 1 ml suspension. The in vitro assessments included compatibility, pH, assay, related substances, syringeability, particle size, zeta potential, sedimentation, resuspendability, dissolution, and SEM. All the in vitro evaluation parameters were within the limits specified by the USP. Findings: Stability studies conducted according to ICH guidelines concluded that the optimised formulation was stable. The drug was found to be compatible and stable with the excipients. Novelty: This study successfully developed a stable and effective intramuscular injection of betamethasone acetate and betamethasone sodium phosphate for depot action. This dual-action formulation, which combines immediate and sustained release properties, offers significant advancement in injectable corticosteroid therapies.

Keywords: Betamethasone acetate, Betamethasone sodium phosphate, DSC, SEM, Zeta potential, Depot suspensions

References

  1. Michael JR, RMGI, E ZS, M HJ, L JO. Preparation of Injectable Suspensions Having Improved Injectability. PubChem. 2024. Available from: https://pubchem.ncbi.nlm.nih.gov/patent/US-6667061-B2.
  2. Patel CA, Keraliya R. A Review: Parentral Depot Drug Delivery System. Journal of Drug Delivery Research. 2014;3:1–10. Available from: https://www.scribd.com/document/353065809/jddr-136-pdf
  3. Sudhakar M, Kancarla R, Rao VU. A Review on Sustained Release Injectable Depot Drug Delivery Systems. International Journal of Advanced Pharmaceutical Sciences and Research. 2013;4:142–158. Available from: https://www.researchgate.net/publication/283727523_A_REVIEW_ON_SUSTAINED_RELEASE_INJECTABLE_DEPOT_DRUG_DELIVERY_SYSTEMS
  4. Sheikh AA. Injectable Controlled Release Drug Delivery Systems. Asian journal of pharmaceutical sciences. 2016;10. Available from: http://www.asiapharmaceutics.info/index.php/ajp/article/view/879
  5. Bodhe R, Deshmukh R, RajendraShinde, Patil K. Formulation Development and Evaluation of Injectable Depot Suspension. International Journal of Medicine and Healthcare Reports. 2022;p. 1–12. Available from: https://www.researchgate.net/publication/350321828_Formulation_Development_and_Evaluation_of_Injectable_Depot_Suspension
  6. Fung AT, Tran T, Lim LL, Samarawickrama C, Arnold J, Gillies M, et al. Local delivery of corticosteroids in clinical ophthalmology: a review. Clinical & Experimental Ophthalmology. 2020;48(3):366–401. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187156/pdf/CEO-48-366.pdf
  7. Meduri GU, Annane D, Confalonieri M, Chrousos GP, Rochwerg B, Busby A, et al. Pharmacological principles guiding prolonged glucocorticoid treatment in ARDS. Journal of intensive care medicine. 2020;46(12):2284–2296. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641258/pdf/134_2020_Article_6289.pdf
  8. Hardy RS, Raza K, Cooper MS. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nature reviews Rheumatology. 2020;16(3):133–144. Available from: https://www.nature.com/articles/s41584-020-0371-y
  9. Talebian S, Wallace GG, Schroeder A, Stellacci F, Conde J. Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nature nanotechnology. 2020;15(8):618–621. Available from: https://www.nature.com/articles/s41565-020-0751-0
  10. Águas R, Mahdi A, Shretta R, Horby P, Landray M, White L. the CoMo Consortium Potential health and economic impacts of dexamethasone treatment for patients with COVID-19. Nature Communications. 2021;12(1). Available from: https://www.nature.com/articles/s41467-021-21134-2
  11. Liu H, Ji M, Xiao P, Gou J, Yin T, He H, et al. Glucocorticoids-based prodrug design: Current strategies and research progress. Asian Journal of Pharmaceutical Sciences. 2024;p. 1–38. Available from: https://doi.org/10.1016/j.ajps.2024.100922
  12. Barnes PJ. Inhaled glucocorticoids for asthma. The New England journal of medicine. 1995;332:668–675. Available from: https://www.nejm.org/doi/full/10.1056/NEJM199503303321307
  13. Barnes PJ. Molecular mechanisms of steroid action in asthma. The Journal of Allergy and Clinical Immunology. 1996;97:159–168. Available from: https://pubmed.ncbi.nlm.nih.gov/8568147/

Copyright

© 2018 Published by Krupanidhi College of Pharmacy. This is an open-access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

DON'T MISS OUT!

Subscribe now for latest articles and news.